HBlackwood commited on
Commit
58ba63e
Β·
verified Β·
1 Parent(s): 1b9e566

Upload 7 files

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -19,7 +19,7 @@ effnetb2.load_state_dict(
19
  f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
20
  map_location=torch.device("cpu") # load the model to the CPU
21
  )
22
- )
23
  ### Predict function
24
 
25
  def predict(img) -> Tuple[Dict, float]:
@@ -47,7 +47,7 @@ def predict(img) -> Tuple[Dict, float]:
47
 
48
  ## 4. Gradio app
49
 
50
- # Create title, description and article.
51
  title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
52
  description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi."
53
  article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)."
@@ -56,14 +56,14 @@ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io
56
  example_list = [["examples/" + example] for exmple in os.listdir("examples")]
57
 
58
  # Create the Gradio demo
59
- demo = gr.Interface(fn=predict, # maps inputs to outputs
60
- inputs=gr.Image(type="pil"),
61
  outputs=[gr.Label(num_top_classes=3, label="Predictions"),
62
  gr.Number(label="Prediction time (s)")],
63
- examples=example_list,
64
- title=title,
65
- description=description,
66
- article=article)
67
-
68
  # Launch the demo!
69
  demo.launch()
 
19
  f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
20
  map_location=torch.device("cpu") # load the model to the CPU
21
  )
22
+ )
23
  ### Predict function
24
 
25
  def predict(img) -> Tuple[Dict, float]:
 
47
 
48
  ## 4. Gradio app
49
 
50
+ # Create title, description and article.
51
  title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
52
  description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi."
53
  article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)."
 
56
  example_list = [["examples/" + example] for exmple in os.listdir("examples")]
57
 
58
  # Create the Gradio demo
59
+ demo = gr.Interface(fn=predict, # maps inputs to outputs
60
+ inputs=gr.Image(type=pil"),
61
  outputs=[gr.Label(num_top_classes=3, label="Predictions"),
62
  gr.Number(label="Prediction time (s)")],
63
+ examples=example_list,
64
+ title-title,
65
+ description=description,
66
+ article=article)
67
+
68
  # Launch the demo!
69
  demo.launch()