Spaces:
Running
Running
File size: 7,794 Bytes
24c5c6a 301ba09 8aa6c67 e6abfd3 988f84d 24c5c6a 301ba09 24c5c6a 126dbe4 24c5c6a 301ba09 24c5c6a e6abfd3 8aa6c67 301ba09 e6abfd3 301ba09 e6abfd3 301ba09 24c5c6a 988f84d 24c5c6a 301ba09 24c5c6a 301ba09 24c5c6a 301ba09 24c5c6a 301ba09 c86e7b2 988f84d c86e7b2 301ba09 c86e7b2 988f84d c86e7b2 988f84d c86e7b2 301ba09 c86e7b2 301ba09 988f84d c86e7b2 988f84d c86e7b2 988f84d c86e7b2 8f4b741 988f84d 8f4b741 988f84d c86e7b2 301ba09 c86e7b2 301ba09 8aa6c67 db2175e 189e440 0711e04 189e440 db2175e 8aa6c67 83d87f5 8aa6c67 301ba09 8aa6c67 301ba09 8aa6c67 e6abfd3 301ba09 8aa6c67 301ba09 8aa6c67 301ba09 8aa6c67 301ba09 8aa6c67 301ba09 8aa6c67 301ba09 24c5c6a 301ba09 24c5c6a 8f4b741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import torch
from torch.nn import Linear
from torch_geometric.nn import HGTConv, MLP
import pandas as pd
import yaml
import os
from datasets import load_dataset
import gdown
import copy
import json
import gzip
class ProtHGT(torch.nn.Module):
def __init__(self, data,hidden_channels, num_heads, num_layers, mlp_hidden_layers, mlp_dropout):
super().__init__()
self.lin_dict = torch.nn.ModuleDict()
for node_type in data.node_types:
input_dim = data[node_type].x.size(1) # Get actual input dimension from data
self.lin_dict[node_type] = Linear(input_dim, hidden_channels)
self.convs = torch.nn.ModuleList()
for _ in range(num_layers):
conv = HGTConv(hidden_channels, hidden_channels, data.metadata(), num_heads, group='sum')
self.convs.append(conv)
self.mlp = MLP(mlp_hidden_layers , dropout=mlp_dropout, norm=None)
def generate_embeddings(self, x_dict, edge_index_dict):
# Generate updated embeddings through the HGT layers
x_dict = {
node_type: self.lin_dict[node_type](x).relu_()
for node_type, x in x_dict.items()
}
for conv in self.convs:
x_dict = conv(x_dict, edge_index_dict)
return x_dict
def forward(self, x_dict, edge_index_dict, tr_edge_label_index, target_type, test=False):
# Get updated embeddings
x_dict = self.generate_embeddings(x_dict, edge_index_dict)
# Make predictions
row, col = tr_edge_label_index
z = torch.cat([x_dict["Protein"][row], x_dict[target_type][col]], dim=-1)
return self.mlp(z).view(-1), x_dict
def _load_data(heterodata, protein_ids, go_category):
"""Process the loaded heterodata for specific proteins and GO categories."""
# Get protein indices for all input proteins
protein_indices = [heterodata['Protein']['id_mapping'][pid] for pid in protein_ids]
n_terms = len(heterodata[go_category]['id_mapping'])
all_edges = []
for protein_idx in protein_indices:
for term_idx in range(n_terms):
all_edges.append([protein_idx, term_idx])
edge_index = torch.tensor(all_edges).t()
heterodata[('Protein', 'protein_function', go_category)].edge_index = edge_index
heterodata[(go_category, 'rev_protein_function', 'Protein')].edge_index = torch.stack([edge_index[1], edge_index[0]])
return heterodata
def get_available_proteins(name_file='data/name_info.json.gz'):
with gzip.open(name_file, 'rt', encoding='utf-8') as file:
name_info = json.load(file)
return list(name_info['Protein'].keys())
def _generate_predictions(heterodata, model, target_type):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()
heterodata = heterodata.to(device)
with torch.no_grad():
edge_label_index = heterodata.edge_index_dict[('Protein', 'protein_function', target_type)]
predictions, _ = model(heterodata.x_dict, heterodata.edge_index_dict, edge_label_index, target_type)
predictions = torch.sigmoid(predictions)
return predictions.cpu()
def _create_prediction_df(predictions, heterodata, protein_ids, go_category):
go_category_dict = {
'GO_term_F': 'Molecular Function',
'GO_term_P': 'Biological Process',
'GO_term_C': 'Cellular Component'
}
# Load name information from gzipped file
with gzip.open('data/name_info.json.gz', 'rt', encoding='utf-8') as file:
name_info = json.load(file)
# Get number of GO terms for this category
n_go_terms = len(heterodata[go_category]['id_mapping'])
# Create lists to store the data
all_proteins = []
all_protein_names = []
all_go_terms = []
all_go_term_names = []
all_categories = []
all_probabilities = []
# Get list of GO terms once
go_terms = list(heterodata[go_category]['id_mapping'].keys())
# Process predictions for each protein
for i, protein_id in enumerate(protein_ids):
# Get predictions for this protein
start_idx = i * n_go_terms
end_idx = (i + 1) * n_go_terms
protein_predictions = predictions[start_idx:end_idx]
# Get protein name
protein_name = name_info['Protein'].get(protein_id, protein_id)
# Extend the lists
all_proteins.extend([protein_id] * n_go_terms)
all_protein_names.extend([protein_name] * n_go_terms)
all_go_terms.extend(go_terms)
all_go_term_names.extend([name_info['GO_term'].get(term_id, term_id) for term_id in go_terms])
all_categories.extend([go_category_dict[go_category]] * n_go_terms)
all_probabilities.extend(protein_predictions.tolist())
# Create DataFrame
prediction_df = pd.DataFrame({
'UniProt_ID': all_proteins,
'Protein': all_protein_names,
'GO_ID': all_go_terms,
'GO_term': all_go_term_names,
'GO_category': all_categories,
'Probability': all_probabilities
})
return prediction_df
def generate_prediction_df(protein_ids, model_paths, model_config_paths, go_category):
all_predictions = []
# Convert single protein ID to list if necessary
if isinstance(protein_ids, str):
protein_ids = [protein_ids]
# Load dataset once
# heterodata = load_dataset('HUBioDataLab/ProtHGT-KG', data_files="prothgt-kg.json.gz")
print('Loading data...')
file_id = "18u1o2sm8YjMo9joFw4Ilwvg0-rUU0PXK"
output = "data/prothgt-kg.pt"
if not os.path.exists(output):
try:
url = f"https://drive.google.com/uc?id={file_id}"
print(f"Downloading file from {url}...")
gdown.download(url, output, quiet=False)
print(f"File downloaded to {output}")
except Exception as e:
print(f"Error downloading file: {e}")
raise
else:
print(f"File already exists at {output}")
heterodata = torch.load(output)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for go_cat, model_config_path, model_path in zip(go_category, model_config_paths, model_paths):
print(f'Generating predictions for {go_cat}...')
# Process data for current GO category
processed_data = _load_data(copy.deepcopy(heterodata), protein_ids, go_cat)
# Load model config
with open(model_config_path, 'r') as file:
model_config = yaml.safe_load(file)
# Initialize model with configuration
model = ProtHGT(
processed_data,
hidden_channels=model_config['hidden_channels'][0],
num_heads=model_config['num_heads'],
num_layers=model_config['num_layers'],
mlp_hidden_layers=model_config['hidden_channels'][1],
mlp_dropout=model_config['mlp_dropout']
)
# Load model weights
model.load_state_dict(torch.load(model_path, map_location=device))
print(f'Loaded model weights from {model_path}')
# Generate predictions
predictions = _generate_predictions(processed_data, model, go_cat)
prediction_df = _create_prediction_df(predictions, processed_data, protein_ids, go_cat)
all_predictions.append(prediction_df)
# Clean up memory
del processed_data
del model
del predictions
torch.cuda.empty_cache() # Clear CUDA cache if using GPU
# Combine all predictions
final_df = pd.concat(all_predictions, ignore_index=True)
# Clean up
del all_predictions
torch.cuda.empty_cache()
return heterodata, final_df
|