Hadiil commited on
Commit
c868759
·
verified ·
1 Parent(s): d6067fd

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -97
app.py DELETED
@@ -1,97 +0,0 @@
1
- import os
2
- from fastapi import FastAPI, UploadFile, File
3
- from transformers import pipeline
4
- import logging
5
- from PIL import Image
6
- import io
7
-
8
- # Configure logging
9
- logging.basicConfig(level=logging.INFO)
10
- logger = logging.getLogger(__name__)
11
-
12
- app = FastAPI()
13
-
14
- # Create a pipeline object for summarization
15
- summarizer = pipeline("summarization", model="sysresearch101/t5-large-finetuned-xsum-cnn")
16
-
17
- # Create a pipeline object for image captioning
18
- image_captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
19
-
20
- # Create a pipeline object for text question answering
21
- qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
22
-
23
- # Create a pipeline object for visual question answering
24
- vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
25
-
26
- @app.get("/")
27
- def read_root():
28
- return {"message": "Welcome to the Summarization, Image Captioning, Question Answering, and Visual Question Answering API!"}
29
-
30
- @app.get("/summarize")
31
- def summarize_text(text: str):
32
- logger.info(f"Received text for summarization: {text}")
33
- try:
34
- # Use the pipeline to summarize the input text
35
- summary = summarizer(text, max_length=100, num_beams=4, early_stopping=True)
36
- logger.info(f"Generated summary: {summary[0]['summary_text']}")
37
- return {"summary": summary[0]['summary_text']}
38
- except Exception as e:
39
- logger.error(f"Error during summarization: {e}")
40
- return {"error": str(e)}
41
-
42
- @app.post("/caption")
43
- async def caption_image(file: UploadFile = File(...)):
44
- logger.info(f"Received image for captioning: {file.filename}")
45
- try:
46
- # Read the image file
47
- image_data = await file.read()
48
- image = Image.open(io.BytesIO(image_data))
49
-
50
- # Use the pipeline to generate a caption for the image
51
- caption = image_captioner(image)
52
- logger.info(f"Generated caption: {caption[0]['generated_text']}")
53
- return {"caption": caption[0]['generated_text']}
54
- except Exception as e:
55
- logger.error(f"Error during image captioning: {e}")
56
- return {"error": str(e)}
57
-
58
- @app.get("/answer")
59
- def answer_question(question: str, context: str):
60
- logger.info(f"Received question: {question}")
61
- logger.info(f"Received context: {context}")
62
- try:
63
- # Use the pipeline to answer the question based on the context
64
- result = qa_pipeline(question=question, context=context)
65
- logger.info(f"Generated answer: {result['answer']}")
66
- return {"answer": result['answer']}
67
- except Exception as e:
68
- logger.error(f"Error during question answering: {e}")
69
- return {"error": str(e)}
70
-
71
- @app.post("/vqa")
72
- async def visual_question_answering(file: UploadFile = File(...), question: str = ""):
73
- logger.info(f"Received image for visual question answering: {file.filename}")
74
- logger.info(f"Received question: {question}")
75
- try:
76
- # Read the image file
77
- image_data = await file.read()
78
- image = Image.open(io.BytesIO(image_data))
79
-
80
- # Use the pipeline to answer the question about the image
81
- result = vqa_pipeline(image=image, question=question)
82
-
83
- # Check if the result is a list and has at least one element
84
- if isinstance(result, list) and len(result) > 0:
85
- logger.info(f"Generated answer: {result[0]['answer']}")
86
- return {"answer": result[0]['answer']}
87
- else:
88
- logger.error("No answer found in the result.")
89
- return {"error": "No answer found in the result."}
90
- except Exception as e:
91
- logger.error(f"Error during visual question answering: {e}")
92
- return {"error": str(e)}
93
-
94
- # Hugging Face Spaces expects the app to be served on port 7860
95
- if __name__ == "__main__":
96
- import uvicorn
97
- uvicorn.run(app, host="0.0.0.0", port=7860)