Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
-
import os
|
5 |
-
|
6 |
-
# Setup cache directory for models
|
7 |
-
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
|
8 |
|
9 |
class CustomChatDoctor:
|
10 |
def __init__(self):
|
@@ -17,31 +13,13 @@ class CustomChatDoctor:
|
|
17 |
# Model name
|
18 |
model_name = "zl111/ChatDoctor"
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# Load tokenizer and model
|
29 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
31 |
-
model_name,
|
32 |
-
quantization_config=quantization_config,
|
33 |
-
device_map="auto",
|
34 |
-
trust_remote_code=True
|
35 |
-
)
|
36 |
-
else:
|
37 |
-
# For CPU, use lighter settings
|
38 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
40 |
-
model_name,
|
41 |
-
device_map="auto",
|
42 |
-
low_cpu_mem_usage=True,
|
43 |
-
trust_remote_code=True
|
44 |
-
)
|
45 |
|
46 |
print("Model loaded successfully!")
|
47 |
|
@@ -51,11 +29,10 @@ class CustomChatDoctor:
|
|
51 |
Your answers should be based on verified medical information.
|
52 |
If a question doesn't make any sense, or is not factually coherent, explain why instead of answering something incorrect.
|
53 |
If you don't know the answer to a question, respond with "I don't have enough information to provide a reliable answer."
|
54 |
-
Always include a disclaimer that you are an AI assistant and not a licensed medical professional.
|
55 |
"""
|
56 |
|
57 |
# Initialize conversation history
|
58 |
-
self.
|
59 |
|
60 |
def generate_response(self, user_input):
|
61 |
try:
|
@@ -67,22 +44,18 @@ class CustomChatDoctor:
|
|
67 |
prompt += "\n".join(self.conversation_history[-10:])
|
68 |
prompt += "\nAI Assistant: "
|
69 |
|
70 |
-
# Generate the response
|
71 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
72 |
|
73 |
-
with torch.no_grad():
|
74 |
-
generation_config = {
|
75 |
-
"max_new_tokens": 512,
|
76 |
-
"temperature": 0.7,
|
77 |
-
"top_p": 0.9,
|
78 |
-
"do_sample": True,
|
79 |
-
"pad_token_id": self.tokenizer.eos_token_id
|
80 |
-
}
|
81 |
-
|
82 |
outputs = self.model.generate(
|
83 |
input_ids=inputs.input_ids,
|
84 |
attention_mask=inputs.attention_mask,
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
|
88 |
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
@@ -93,115 +66,53 @@ class CustomChatDoctor:
|
|
93 |
return response
|
94 |
|
95 |
except Exception as e:
|
96 |
-
# Handle any errors during generation
|
97 |
error_message = f"An error occurred: {str(e)}"
|
98 |
print(error_message)
|
99 |
-
return "I'm sorry, I encountered an error processing your question. Please try again
|
100 |
|
101 |
def reset_conversation(self):
|
102 |
self.conversation_history = []
|
103 |
return None
|
104 |
|
105 |
-
#
|
106 |
-
chat_doctor =
|
107 |
-
|
108 |
-
def get_chat_doctor():
|
109 |
-
global chat_doctor
|
110 |
-
if chat_doctor is None:
|
111 |
-
chat_doctor = CustomChatDoctor()
|
112 |
-
return chat_doctor
|
113 |
|
114 |
-
#
|
115 |
examples = [
|
116 |
"What are the symptoms of diabetes?",
|
117 |
"How can I manage my hypertension?",
|
118 |
-
"What should I do for a persistent headache?"
|
119 |
-
"Can you explain what asthma is?",
|
120 |
-
"What are the side effects of ibuprofen?"
|
121 |
]
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
.gradio-container {
|
126 |
-
font-family: 'Arial', sans-serif;
|
127 |
-
}
|
128 |
-
.disclaimer {
|
129 |
-
margin-top: 20px;
|
130 |
-
padding: 10px;
|
131 |
-
background-color: #f8f9fa;
|
132 |
-
border-left: 3px solid #f0ad4e;
|
133 |
-
font-size: 14px;
|
134 |
-
}
|
135 |
-
"""
|
136 |
-
|
137 |
-
# Create welcome message function
|
138 |
-
def welcome():
|
139 |
-
return "Welcome to ChatDoctor! I'm an AI assistant trained to provide medical information. How can I help you today?"
|
140 |
-
|
141 |
-
# Build the Gradio interface
|
142 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
143 |
gr.Markdown("# Your Custom ChatDoctor")
|
144 |
gr.Markdown("Ask medical questions and get AI-powered responses.")
|
145 |
|
146 |
-
chatbot = gr.Chatbot(
|
147 |
-
msg = gr.Textbox(placeholder="Type your medical question here..."
|
148 |
|
149 |
with gr.Row():
|
150 |
-
submit_btn = gr.Button("Send"
|
151 |
clear_btn = gr.Button("Clear Conversation")
|
152 |
|
153 |
-
|
154 |
-
gr.Examples(
|
155 |
-
examples=examples,
|
156 |
-
inputs=msg
|
157 |
-
)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
This AI uses language models to generate responses based on patterns learned from medical texts and conversations.
|
164 |
-
|
165 |
-
**Important Notes:**
|
166 |
-
- This system is for informational purposes only
|
167 |
-
- Not a substitute for professional medical advice
|
168 |
-
- In emergencies, contact emergency services immediately
|
169 |
-
""")
|
170 |
-
|
171 |
-
# Add disclaimer at the bottom with custom styling
|
172 |
-
gr.HTML("""
|
173 |
-
<div class="disclaimer">
|
174 |
-
<strong>Disclaimer:</strong> This AI assistant provides information for educational purposes only.
|
175 |
-
Always consult with a qualified healthcare provider for medical advice, diagnosis, or treatment.
|
176 |
-
This tool is not intended to replace professional medical consultation.
|
177 |
-
</div>
|
178 |
""")
|
179 |
|
180 |
def respond(message, chat_history):
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
if message.strip() == "":
|
185 |
-
return "", chat_history
|
186 |
-
|
187 |
-
bot_message = doctor.generate_response(message)
|
188 |
-
chat_history.append({"role": "user", "content": message})
|
189 |
-
chat_history.append({"role": "assistant", "content": bot_message})
|
190 |
return "", chat_history
|
191 |
|
192 |
def clear_history():
|
193 |
-
|
194 |
-
doctor.reset_conversation()
|
195 |
return None
|
196 |
|
197 |
-
# Show welcome message when the app starts
|
198 |
-
demo.load(lambda: None, None, chatbot, js="""
|
199 |
-
() => {
|
200 |
-
const welcomeMsg = "Welcome to ChatDoctor! I'm an AI assistant trained to provide medical information. How can I help you today?";
|
201 |
-
return [[null, welcomeMsg]];
|
202 |
-
}
|
203 |
-
""")
|
204 |
-
|
205 |
submit_btn.click(respond, [msg, chatbot], [msg, chatbot])
|
206 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
207 |
clear_btn.click(clear_history, None, chatbot)
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
4 |
|
5 |
class CustomChatDoctor:
|
6 |
def __init__(self):
|
|
|
13 |
# Model name
|
14 |
model_name = "zl111/ChatDoctor"
|
15 |
|
16 |
+
# Load tokenizer and model
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
device_map="auto",
|
21 |
+
trust_remote_code=True
|
22 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
print("Model loaded successfully!")
|
25 |
|
|
|
29 |
Your answers should be based on verified medical information.
|
30 |
If a question doesn't make any sense, or is not factually coherent, explain why instead of answering something incorrect.
|
31 |
If you don't know the answer to a question, respond with "I don't have enough information to provide a reliable answer."
|
|
|
32 |
"""
|
33 |
|
34 |
# Initialize conversation history
|
35 |
+
self.conversation_history = []
|
36 |
|
37 |
def generate_response(self, user_input):
|
38 |
try:
|
|
|
44 |
prompt += "\n".join(self.conversation_history[-10:])
|
45 |
prompt += "\nAI Assistant: "
|
46 |
|
47 |
+
# Generate the response
|
48 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
49 |
|
50 |
+
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
outputs = self.model.generate(
|
52 |
input_ids=inputs.input_ids,
|
53 |
attention_mask=inputs.attention_mask,
|
54 |
+
max_new_tokens=512,
|
55 |
+
temperature=0.7,
|
56 |
+
top_p=0.9,
|
57 |
+
do_sample=True,
|
58 |
+
pad_token_id=self.tokenizer.eos_token_id
|
59 |
)
|
60 |
|
61 |
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
|
|
66 |
return response
|
67 |
|
68 |
except Exception as e:
|
|
|
69 |
error_message = f"An error occurred: {str(e)}"
|
70 |
print(error_message)
|
71 |
+
return "I'm sorry, I encountered an error processing your question. Please try again."
|
72 |
|
73 |
def reset_conversation(self):
|
74 |
self.conversation_history = []
|
75 |
return None
|
76 |
|
77 |
+
# Initialize the model
|
78 |
+
chat_doctor = CustomChatDoctor()
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Define example inputs
|
81 |
examples = [
|
82 |
"What are the symptoms of diabetes?",
|
83 |
"How can I manage my hypertension?",
|
84 |
+
"What should I do for a persistent headache?"
|
|
|
|
|
85 |
]
|
86 |
|
87 |
+
# Create Gradio interface
|
88 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
gr.Markdown("# Your Custom ChatDoctor")
|
90 |
gr.Markdown("Ask medical questions and get AI-powered responses.")
|
91 |
|
92 |
+
chatbot = gr.Chatbot()
|
93 |
+
msg = gr.Textbox(placeholder="Type your medical question here...")
|
94 |
|
95 |
with gr.Row():
|
96 |
+
submit_btn = gr.Button("Send")
|
97 |
clear_btn = gr.Button("Clear Conversation")
|
98 |
|
99 |
+
gr.Examples(examples=examples, inputs=msg)
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
gr.Markdown("""
|
102 |
+
### Disclaimer
|
103 |
+
This AI assistant provides information for educational purposes only.
|
104 |
+
Always consult with a qualified healthcare provider for medical advice.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
""")
|
106 |
|
107 |
def respond(message, chat_history):
|
108 |
+
bot_message = chat_doctor.generate_response(message)
|
109 |
+
chat_history.append((message, bot_message))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
return "", chat_history
|
111 |
|
112 |
def clear_history():
|
113 |
+
chat_doctor.reset_conversation()
|
|
|
114 |
return None
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
submit_btn.click(respond, [msg, chatbot], [msg, chatbot])
|
117 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
118 |
clear_btn.click(clear_history, None, chatbot)
|