Update app.py
Browse files
app.py
CHANGED
@@ -12,14 +12,36 @@ import os
|
|
12 |
import json
|
13 |
import requests
|
14 |
import re
|
15 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
16 |
import torch
|
17 |
import openai
|
|
|
|
|
|
|
18 |
|
19 |
# Set plot styling
|
20 |
sns.set(style="whitegrid")
|
21 |
plt.rcParams["figure.figsize"] = (10, 6)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Initialize AI Models
|
24 |
def initialize_ai_models():
|
25 |
"""Initialize the AI models for data analysis."""
|
@@ -28,52 +50,86 @@ def initialize_ai_models():
|
|
28 |
|
29 |
# Initialize Hugging Face model for data recommendations
|
30 |
try:
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
32 |
-
model = AutoModelForCausalLM.from_pretrained("
|
33 |
data_assistant = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
34 |
-
except:
|
|
|
35 |
# Fallback to a smaller model if the main one fails to load
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
return data_assistant
|
39 |
|
40 |
-
# Global variables for AI models
|
41 |
-
data_assistant = None
|
42 |
-
|
43 |
def read_file(file):
|
44 |
-
"""Read different file formats into a pandas DataFrame."""
|
45 |
if file is None:
|
46 |
return None
|
47 |
|
48 |
file_name = file.name if hasattr(file, 'name') else ''
|
|
|
49 |
|
50 |
try:
|
51 |
# Handle different file types
|
52 |
if file_name.endswith('.csv'):
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
try:
|
59 |
-
df = pd.read_csv(file)
|
60 |
-
|
61 |
-
if len(df.columns) == 1 and ';' in df.columns[0]:
|
62 |
-
return pd.read_csv(file, sep=';')
|
63 |
return df
|
64 |
except:
|
65 |
-
#
|
66 |
-
|
|
|
67 |
|
68 |
elif file_name.endswith(('.xls', '.xlsx')):
|
69 |
return pd.read_excel(file)
|
70 |
elif file_name.endswith('.json'):
|
71 |
return pd.read_json(file)
|
72 |
elif file_name.endswith('.txt'):
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
else:
|
75 |
return "Unsupported file format. Please upload .csv, .xlsx, .xls, .json, or .txt files."
|
76 |
except Exception as e:
|
|
|
77 |
return f"Error reading file: {str(e)}"
|
78 |
|
79 |
def analyze_data(df):
|
@@ -202,8 +258,11 @@ def detect_outliers(df, numeric_cols):
|
|
202 |
def generate_visualizations(df):
|
203 |
"""Generate appropriate visualizations based on the data types."""
|
204 |
if not isinstance(df, pd.DataFrame):
|
|
|
205 |
return df # Return error message if df is not a DataFrame
|
206 |
|
|
|
|
|
207 |
visualizations = {}
|
208 |
|
209 |
# Identify column types
|
@@ -212,108 +271,226 @@ def generate_visualizations(df):
|
|
212 |
date_cols = [col for col in df.columns if df[col].dtype == 'datetime64[ns]' or
|
213 |
(df[col].dtype == 'object' and pd.to_datetime(df[col], errors='coerce').notna().all())]
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
fig = px.histogram(df, x=col, marginal="box", title=f"Distribution of {col}")
|
219 |
-
visualizations[f'dist_{col}'] = fig
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
# 5. Time series plot if date column exists
|
245 |
-
if date_cols and numeric_cols:
|
246 |
-
date_col = date_cols[0] # Use the first date column
|
247 |
-
# Convert to datetime if not already
|
248 |
-
if df[date_col].dtype != 'datetime64[ns]':
|
249 |
-
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
|
250 |
-
|
251 |
-
# Sort by date
|
252 |
-
df_sorted = df.sort_values(by=date_col)
|
253 |
-
|
254 |
-
# Create time series for first numeric column
|
255 |
-
num_col = numeric_cols[0]
|
256 |
-
fig = px.line(df_sorted, x=date_col, y=num_col,
|
257 |
-
title=f"{num_col} over Time")
|
258 |
-
visualizations['time_series'] = fig
|
259 |
-
|
260 |
-
# 6. PCA visualization if enough numeric columns
|
261 |
-
if len(numeric_cols) >= 3:
|
262 |
-
# Apply PCA to numeric data
|
263 |
-
numeric_data = df[numeric_cols].select_dtypes(include=[np.number])
|
264 |
-
# Fill NaN values with mean for PCA
|
265 |
-
numeric_data = numeric_data.fillna(numeric_data.mean())
|
266 |
-
|
267 |
-
# Standardize the data
|
268 |
-
scaler = StandardScaler()
|
269 |
-
scaled_data = scaler.fit_transform(numeric_data)
|
270 |
-
|
271 |
-
# Apply PCA with 2 components
|
272 |
-
pca = PCA(n_components=2)
|
273 |
-
pca_result = pca.fit_transform(scaled_data)
|
274 |
-
|
275 |
-
# Create a DataFrame with PCA results
|
276 |
-
pca_df = pd.DataFrame(data=pca_result, columns=['PC1', 'PC2'])
|
277 |
-
|
278 |
-
# If categorical column exists, use it for color
|
279 |
if categorical_cols:
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
)
|
307 |
-
]
|
308 |
-
)
|
309 |
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
return visualizations
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
def get_ai_cleaning_recommendations(df):
|
315 |
"""Get AI-powered recommendations for data cleaning using OpenAI."""
|
316 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
# Prepare the dataset summary
|
318 |
summary = {
|
319 |
"shape": df.shape,
|
@@ -340,47 +517,49 @@ def get_ai_cleaning_recommendations(df):
|
|
340 |
Format your response as markdown and ONLY include the cleaning recommendations.
|
341 |
"""
|
342 |
|
343 |
-
#
|
344 |
-
api_key =
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
# Shorten the prompt for the smaller model
|
363 |
short_prompt = f"Data cleaning recommendations for dataset with {df.shape[0]} rows, {df.shape[1]} columns, and columns: {', '.join(df.columns[:5])}..."
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
384 |
return f"""
|
385 |
## Data Cleaning Recommendations
|
386 |
|
@@ -396,10 +575,43 @@ def get_ai_cleaning_recommendations(df):
|
|
396 |
def get_hf_model_insights(df):
|
397 |
"""Get dataset insights using Hugging Face model."""
|
398 |
try:
|
399 |
-
global data_assistant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
if data_assistant is None:
|
401 |
data_assistant = initialize_ai_models()
|
402 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
# Prepare a brief summary of the dataset
|
404 |
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
|
405 |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
@@ -454,7 +666,7 @@ def process_file(file):
|
|
454 |
# Read the file
|
455 |
df = read_file(file)
|
456 |
|
457 |
-
if isinstance(df, str): #
|
458 |
return df, None, None, None
|
459 |
|
460 |
# Convert date columns to datetime
|
@@ -638,38 +850,6 @@ def apply_data_cleaning(df, cleaning_options):
|
|
638 |
|
639 |
return cleaned_df, cleaning_log
|
640 |
|
641 |
-
def app_ui(file):
|
642 |
-
"""Main function for the Gradio interface."""
|
643 |
-
if file is None:
|
644 |
-
return "Please upload a file to begin analysis.", None, None, None
|
645 |
-
|
646 |
-
# Process the file
|
647 |
-
analysis, visualizations, cleaning_recommendations, analysis_insights = process_file(file)
|
648 |
-
|
649 |
-
if isinstance(analysis, str): # If error message
|
650 |
-
return analysis, None, None, None
|
651 |
-
|
652 |
-
# Format analysis for display
|
653 |
-
analysis_html = display_analysis(analysis)
|
654 |
-
|
655 |
-
# Prepare visualizations for display
|
656 |
-
viz_html = ""
|
657 |
-
if visualizations and not isinstance(visualizations, str):
|
658 |
-
for viz_name, fig in visualizations.items():
|
659 |
-
# Convert plotly figure to HTML
|
660 |
-
viz_html += f'<div style="margin-bottom: 30px;">{fig.to_html(full_html=False, include_plotlyjs="cdn")}</div>'
|
661 |
-
|
662 |
-
# Combine analysis and visualizations
|
663 |
-
result_html = f"""
|
664 |
-
<div style="display: flex; flex-direction: column;">
|
665 |
-
<div>{analysis_html}</div>
|
666 |
-
<h2>Data Visualizations</h2>
|
667 |
-
<div>{viz_html}</div>
|
668 |
-
</div>
|
669 |
-
"""
|
670 |
-
|
671 |
-
return result_html, visualizations, cleaning_recommendations, analysis_insights
|
672 |
-
|
673 |
def apply_cleaning_ui(file, handle_missing, missing_method, remove_duplicates,
|
674 |
handle_outliers, outlier_method, convert_dates, date_columns,
|
675 |
normalize_numeric):
|
@@ -680,7 +860,7 @@ def apply_cleaning_ui(file, handle_missing, missing_method, remove_duplicates,
|
|
680 |
# Read the file
|
681 |
df = read_file(file)
|
682 |
|
683 |
-
if isinstance(df, str): #
|
684 |
return df, None
|
685 |
|
686 |
# Configure cleaning options
|
@@ -721,19 +901,87 @@ def apply_cleaning_ui(file, handle_missing, missing_method, remove_duplicates,
|
|
721 |
|
722 |
return result_summary, buffer
|
723 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
724 |
# Create Gradio interface
|
725 |
with gr.Blocks(title="Data Visualization & Cleaning AI") as demo:
|
726 |
gr.Markdown("# Data Visualization & Cleaning AI")
|
727 |
gr.Markdown("Upload your data file (CSV, Excel, JSON, or TXT) and get automatic analysis, visualizations, and AI-powered insights.")
|
728 |
|
729 |
-
with gr.
|
730 |
-
file_input = gr.File(label="Upload Data File")
|
731 |
-
|
732 |
-
with gr.Tabs():
|
733 |
with gr.TabItem("Data Analysis"):
|
734 |
with gr.Row():
|
|
|
735 |
analyze_button = gr.Button("Analyze Data")
|
736 |
|
|
|
|
|
|
|
|
|
737 |
with gr.Tabs():
|
738 |
with gr.TabItem("Analysis & Visualizations"):
|
739 |
output = gr.HTML(label="Results")
|
@@ -772,6 +1020,32 @@ with gr.Blocks(title="Data Visualization & Cleaning AI") as demo:
|
|
772 |
clean_button = gr.Button("Clean Data")
|
773 |
cleaning_output = gr.HTML(label="Cleaning Results")
|
774 |
cleaned_file_output = gr.File(label="Download Cleaned Data")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
775 |
|
776 |
# Connect the buttons to functions
|
777 |
analyze_button.click(
|
@@ -789,6 +1063,18 @@ with gr.Blocks(title="Data Visualization & Cleaning AI") as demo:
|
|
789 |
],
|
790 |
outputs=[cleaning_output, cleaned_file_output]
|
791 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
792 |
|
793 |
# Initialize AI models
|
794 |
try:
|
|
|
12 |
import json
|
13 |
import requests
|
14 |
import re
|
|
|
15 |
import torch
|
16 |
import openai
|
17 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
18 |
+
import base64
|
19 |
+
from io import BytesIO
|
20 |
|
21 |
# Set plot styling
|
22 |
sns.set(style="whitegrid")
|
23 |
plt.rcParams["figure.figsize"] = (10, 6)
|
24 |
|
25 |
+
# Global variables for API keys and AI models
|
26 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
|
27 |
+
HF_API_TOKEN = os.environ.get("HF_API_TOKEN", "")
|
28 |
+
data_assistant = None
|
29 |
+
|
30 |
+
def set_openai_key(api_key):
|
31 |
+
"""Set the OpenAI API key."""
|
32 |
+
global OPENAI_API_KEY
|
33 |
+
OPENAI_API_KEY = api_key
|
34 |
+
openai.api_key = api_key
|
35 |
+
return "OpenAI API key set successfully!"
|
36 |
+
|
37 |
+
def set_hf_token(api_token):
|
38 |
+
"""Set the Hugging Face API token."""
|
39 |
+
global HF_API_TOKEN, data_assistant
|
40 |
+
HF_API_TOKEN = api_token
|
41 |
+
os.environ["TRANSFORMERS_TOKEN"] = api_token
|
42 |
+
data_assistant = initialize_ai_models()
|
43 |
+
return "Hugging Face token set successfully!"
|
44 |
+
|
45 |
# Initialize AI Models
|
46 |
def initialize_ai_models():
|
47 |
"""Initialize the AI models for data analysis."""
|
|
|
50 |
|
51 |
# Initialize Hugging Face model for data recommendations
|
52 |
try:
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
54 |
+
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
55 |
data_assistant = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error loading model: {e}")
|
58 |
# Fallback to a smaller model if the main one fails to load
|
59 |
+
try:
|
60 |
+
data_assistant = pipeline("text-generation", model="distilgpt2")
|
61 |
+
except:
|
62 |
+
data_assistant = None
|
63 |
|
64 |
return data_assistant
|
65 |
|
|
|
|
|
|
|
66 |
def read_file(file):
|
67 |
+
"""Read different file formats into a pandas DataFrame with robust separator detection."""
|
68 |
if file is None:
|
69 |
return None
|
70 |
|
71 |
file_name = file.name if hasattr(file, 'name') else ''
|
72 |
+
print(f"Reading file: {file_name}")
|
73 |
|
74 |
try:
|
75 |
# Handle different file types
|
76 |
if file_name.endswith('.csv'):
|
77 |
+
# First try with comma
|
78 |
+
try:
|
79 |
+
df = pd.read_csv(file)
|
80 |
+
|
81 |
+
# Check if we got only one column but it contains semicolons
|
82 |
+
if len(df.columns) == 1 and ';' in str(df.columns[0]):
|
83 |
+
print("Detected potential semicolon-separated file")
|
84 |
+
# Reset file position
|
85 |
+
file.seek(0)
|
86 |
+
# Try with semicolon
|
87 |
+
df = pd.read_csv(file, sep=';')
|
88 |
+
print(f"Read file with semicolon separator: {df.shape}")
|
89 |
+
else:
|
90 |
+
print(f"Read file with comma separator: {df.shape}")
|
91 |
+
|
92 |
+
# Convert columns to appropriate types
|
93 |
+
for col in df.columns:
|
94 |
+
# Try to convert string columns to numeric
|
95 |
+
if df[col].dtype == 'object':
|
96 |
+
df[col] = pd.to_numeric(df[col], errors='ignore')
|
97 |
+
|
98 |
+
return df
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Error with standard separators: {e}")
|
101 |
+
# Try with semicolon
|
102 |
+
file.seek(0)
|
103 |
try:
|
104 |
+
df = pd.read_csv(file, sep=';')
|
105 |
+
print(f"Read file with semicolon separator after error: {df.shape}")
|
|
|
|
|
106 |
return df
|
107 |
except:
|
108 |
+
# Final attempt with Python's csv sniffer
|
109 |
+
file.seek(0)
|
110 |
+
return pd.read_csv(file, sep=None, engine='python')
|
111 |
|
112 |
elif file_name.endswith(('.xls', '.xlsx')):
|
113 |
return pd.read_excel(file)
|
114 |
elif file_name.endswith('.json'):
|
115 |
return pd.read_json(file)
|
116 |
elif file_name.endswith('.txt'):
|
117 |
+
# Try tab separator first for text files
|
118 |
+
try:
|
119 |
+
df = pd.read_csv(file, delimiter='\t')
|
120 |
+
if len(df.columns) <= 1:
|
121 |
+
# If tab doesn't work well, try with separator detection
|
122 |
+
file.seek(0)
|
123 |
+
df = pd.read_csv(file, sep=None, engine='python')
|
124 |
+
return df
|
125 |
+
except:
|
126 |
+
# Fall back to separator detection
|
127 |
+
file.seek(0)
|
128 |
+
return pd.read_csv(file, sep=None, engine='python')
|
129 |
else:
|
130 |
return "Unsupported file format. Please upload .csv, .xlsx, .xls, .json, or .txt files."
|
131 |
except Exception as e:
|
132 |
+
print(f"Error reading file: {str(e)}")
|
133 |
return f"Error reading file: {str(e)}"
|
134 |
|
135 |
def analyze_data(df):
|
|
|
258 |
def generate_visualizations(df):
|
259 |
"""Generate appropriate visualizations based on the data types."""
|
260 |
if not isinstance(df, pd.DataFrame):
|
261 |
+
print(f"Not a DataFrame: {type(df)}")
|
262 |
return df # Return error message if df is not a DataFrame
|
263 |
|
264 |
+
print(f"Starting visualization generation for DataFrame with shape: {df.shape}")
|
265 |
+
|
266 |
visualizations = {}
|
267 |
|
268 |
# Identify column types
|
|
|
271 |
date_cols = [col for col in df.columns if df[col].dtype == 'datetime64[ns]' or
|
272 |
(df[col].dtype == 'object' and pd.to_datetime(df[col], errors='coerce').notna().all())]
|
273 |
|
274 |
+
print(f"Found {len(numeric_cols)} numeric columns: {numeric_cols}")
|
275 |
+
print(f"Found {len(categorical_cols)} categorical columns: {categorical_cols}")
|
276 |
+
print(f"Found {len(date_cols)} date columns: {date_cols}")
|
|
|
|
|
277 |
|
278 |
+
try:
|
279 |
+
# Simple test plot to verify Plotly is working
|
280 |
+
if len(df) > 0 and len(df.columns) > 0:
|
281 |
+
col = df.columns[0]
|
282 |
+
try:
|
283 |
+
test_data = df[col].head(100)
|
284 |
+
fig = px.histogram(x=test_data, title=f"Test Plot for {col}")
|
285 |
+
visualizations['test_plot'] = fig
|
286 |
+
print(f"Generated test plot for column: {col}")
|
287 |
+
except Exception as e:
|
288 |
+
print(f"Error creating test plot: {e}")
|
289 |
+
|
290 |
+
# 1. Distribution plots for numeric columns (first 5)
|
291 |
+
if numeric_cols:
|
292 |
+
for i, col in enumerate(numeric_cols[:5]): # Limit to first 5 numeric columns
|
293 |
+
try:
|
294 |
+
fig = px.histogram(df, x=col, marginal="box", title=f"Distribution of {col}")
|
295 |
+
visualizations[f'dist_{col}'] = fig
|
296 |
+
print(f"Generated distribution plot for {col}")
|
297 |
+
except Exception as e:
|
298 |
+
print(f"Error creating histogram for {col}: {e}")
|
299 |
+
|
300 |
+
# 2. Bar charts for categorical columns (first 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
if categorical_cols:
|
302 |
+
for i, col in enumerate(categorical_cols[:5]): # Limit to first 5 categorical columns
|
303 |
+
try:
|
304 |
+
# Get value counts and handle potential large number of categories
|
305 |
+
value_counts = df[col].value_counts().nlargest(10) # Top 10 categories
|
306 |
+
|
307 |
+
# Convert indices to strings to ensure they can be plotted
|
308 |
+
value_counts.index = value_counts.index.astype(str)
|
309 |
+
|
310 |
+
fig = px.bar(x=value_counts.index, y=value_counts.values,
|
311 |
+
title=f"Top 10 categories in {col}")
|
312 |
+
fig.update_xaxes(title=col)
|
313 |
+
fig.update_yaxes(title="Count")
|
314 |
+
visualizations[f'bar_{col}'] = fig
|
315 |
+
print(f"Generated bar chart for {col}")
|
316 |
+
except Exception as e:
|
317 |
+
print(f"Error creating bar chart for {col}: {e}")
|
318 |
+
|
319 |
+
# 3. Correlation heatmap for numeric columns
|
320 |
+
if len(numeric_cols) > 1:
|
321 |
+
try:
|
322 |
+
corr_matrix = df[numeric_cols].corr()
|
323 |
+
fig = px.imshow(corr_matrix, text_auto=True, aspect="auto",
|
324 |
+
title="Correlation Heatmap")
|
325 |
+
visualizations['correlation'] = fig
|
326 |
+
print("Generated correlation heatmap")
|
327 |
+
except Exception as e:
|
328 |
+
print(f"Error creating correlation heatmap: {e}")
|
|
|
|
|
329 |
|
330 |
+
# 4. Scatter plot matrix (first 3 numeric columns to keep it manageable)
|
331 |
+
if len(numeric_cols) >= 2:
|
332 |
+
try:
|
333 |
+
plot_cols = numeric_cols[:3] # Limit to first 3 numeric columns
|
334 |
+
fig = px.scatter_matrix(df, dimensions=plot_cols, title="Scatter Plot Matrix")
|
335 |
+
visualizations['scatter_matrix'] = fig
|
336 |
+
print("Generated scatter plot matrix")
|
337 |
+
except Exception as e:
|
338 |
+
print(f"Error creating scatter matrix: {e}")
|
339 |
+
|
340 |
+
# 5. Time series plot if date column exists
|
341 |
+
if date_cols and numeric_cols:
|
342 |
+
try:
|
343 |
+
date_col = date_cols[0] # Use the first date column
|
344 |
+
# Convert to datetime if not already
|
345 |
+
if df[date_col].dtype != 'datetime64[ns]':
|
346 |
+
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
|
347 |
+
|
348 |
+
# Sort by date
|
349 |
+
df_sorted = df.sort_values(by=date_col)
|
350 |
+
|
351 |
+
# Create time series for first numeric column
|
352 |
+
num_col = numeric_cols[0]
|
353 |
+
fig = px.line(df_sorted, x=date_col, y=num_col,
|
354 |
+
title=f"{num_col} over Time")
|
355 |
+
visualizations['time_series'] = fig
|
356 |
+
print("Generated time series plot")
|
357 |
+
except Exception as e:
|
358 |
+
print(f"Error creating time series plot: {e}")
|
359 |
+
|
360 |
+
# 6. PCA visualization if enough numeric columns
|
361 |
+
if len(numeric_cols) >= 3:
|
362 |
+
try:
|
363 |
+
# Apply PCA to numeric data
|
364 |
+
numeric_data = df[numeric_cols].select_dtypes(include=[np.number])
|
365 |
+
# Fill NaN values with mean for PCA
|
366 |
+
numeric_data = numeric_data.fillna(numeric_data.mean())
|
367 |
+
|
368 |
+
# Standardize the data
|
369 |
+
scaler = StandardScaler()
|
370 |
+
scaled_data = scaler.fit_transform(numeric_data)
|
371 |
+
|
372 |
+
# Apply PCA with 2 components
|
373 |
+
pca = PCA(n_components=2)
|
374 |
+
pca_result = pca.fit_transform(scaled_data)
|
375 |
+
|
376 |
+
# Create a DataFrame with PCA results
|
377 |
+
pca_df = pd.DataFrame(data=pca_result, columns=['PC1', 'PC2'])
|
378 |
+
|
379 |
+
# If categorical column exists, use it for color
|
380 |
+
if categorical_cols:
|
381 |
+
cat_col = categorical_cols[0]
|
382 |
+
pca_df[cat_col] = df[cat_col].values
|
383 |
+
fig = px.scatter(pca_df, x='PC1', y='PC2', color=cat_col,
|
384 |
+
title="PCA Visualization")
|
385 |
+
else:
|
386 |
+
fig = px.scatter(pca_df, x='PC1', y='PC2',
|
387 |
+
title="PCA Visualization")
|
388 |
+
|
389 |
+
variance_ratio = pca.explained_variance_ratio_
|
390 |
+
fig.update_layout(
|
391 |
+
annotations=[
|
392 |
+
dict(
|
393 |
+
text=f"PC1 explained variance: {variance_ratio[0]:.2f}",
|
394 |
+
showarrow=False,
|
395 |
+
x=0.5,
|
396 |
+
y=1.05,
|
397 |
+
xref="paper",
|
398 |
+
yref="paper"
|
399 |
+
),
|
400 |
+
dict(
|
401 |
+
text=f"PC2 explained variance: {variance_ratio[1]:.2f}",
|
402 |
+
showarrow=False,
|
403 |
+
x=0.5,
|
404 |
+
y=1.02,
|
405 |
+
xref="paper",
|
406 |
+
yref="paper"
|
407 |
+
)
|
408 |
+
]
|
409 |
+
)
|
410 |
+
|
411 |
+
visualizations['pca'] = fig
|
412 |
+
print("Generated PCA visualization")
|
413 |
+
except Exception as e:
|
414 |
+
print(f"Error creating PCA visualization: {e}")
|
415 |
+
|
416 |
+
except Exception as e:
|
417 |
+
print(f"Error in visualization generation: {e}")
|
418 |
+
|
419 |
+
print(f"Generated {len(visualizations)} visualizations")
|
420 |
+
|
421 |
+
# If no visualizations were created, add a fallback
|
422 |
+
if not visualizations:
|
423 |
+
visualizations['fallback'] = generate_fallback_visualization(df)
|
424 |
|
425 |
return visualizations
|
426 |
|
427 |
+
def generate_fallback_visualization(df):
|
428 |
+
"""Generate a simple fallback visualization using matplotlib."""
|
429 |
+
try:
|
430 |
+
plt.figure(figsize=(10, 6))
|
431 |
+
|
432 |
+
# Choose what to plot based on data types
|
433 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
|
434 |
+
if numeric_cols:
|
435 |
+
# Plot first numeric column
|
436 |
+
col = numeric_cols[0]
|
437 |
+
plt.hist(df[col].dropna(), bins=20)
|
438 |
+
plt.title(f"Distribution of {col}")
|
439 |
+
plt.xlabel(col)
|
440 |
+
plt.ylabel("Count")
|
441 |
+
else:
|
442 |
+
# Plot count of first column values
|
443 |
+
col = df.columns[0]
|
444 |
+
value_counts = df[col].value_counts().nlargest(10)
|
445 |
+
plt.bar(value_counts.index.astype(str), value_counts.values)
|
446 |
+
plt.title(f"Top values for {col}")
|
447 |
+
plt.xticks(rotation=45)
|
448 |
+
plt.ylabel("Count")
|
449 |
+
|
450 |
+
# Create a plotly figure from matplotlib
|
451 |
+
fig = go.Figure()
|
452 |
+
|
453 |
+
# Add trace based on the type of plot
|
454 |
+
if numeric_cols:
|
455 |
+
hist, bin_edges = np.histogram(df[numeric_cols[0]].dropna(), bins=20)
|
456 |
+
bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2
|
457 |
+
fig.add_trace(go.Bar(x=bin_centers, y=hist, name=numeric_cols[0]))
|
458 |
+
fig.update_layout(title=f"Distribution of {numeric_cols[0]}")
|
459 |
+
else:
|
460 |
+
col = df.columns[0]
|
461 |
+
counts = df[col].value_counts().nlargest(10)
|
462 |
+
fig.add_trace(go.Bar(x=counts.index.astype(str), y=counts.values, name=col))
|
463 |
+
fig.update_layout(title=f"Top values for {col}")
|
464 |
+
|
465 |
+
return fig
|
466 |
+
except Exception as e:
|
467 |
+
print(f"Error generating fallback visualization: {e}")
|
468 |
+
# Create an empty plotly figure as last resort
|
469 |
+
fig = go.Figure()
|
470 |
+
fig.add_annotation(text="Could not generate visualization", showarrow=False)
|
471 |
+
fig.update_layout(title="Visualization Error")
|
472 |
+
return fig
|
473 |
+
|
474 |
def get_ai_cleaning_recommendations(df):
|
475 |
"""Get AI-powered recommendations for data cleaning using OpenAI."""
|
476 |
try:
|
477 |
+
# Check if OpenAI API key is available
|
478 |
+
global OPENAI_API_KEY
|
479 |
+
if not OPENAI_API_KEY:
|
480 |
+
return """
|
481 |
+
## OpenAI API Key Not Configured
|
482 |
+
|
483 |
+
Please set your OpenAI API key in the Settings tab to get AI-powered data cleaning recommendations.
|
484 |
+
|
485 |
+
Without an API key, here are some general recommendations:
|
486 |
+
|
487 |
+
* Handle missing values by either removing rows or imputing with mean/median/mode
|
488 |
+
* Remove duplicate rows if present
|
489 |
+
* Convert date-like string columns to proper datetime format
|
490 |
+
* Standardize text data by removing extra spaces and converting to lowercase
|
491 |
+
* Check for and handle outliers in numerical columns
|
492 |
+
"""
|
493 |
+
|
494 |
# Prepare the dataset summary
|
495 |
summary = {
|
496 |
"shape": df.shape,
|
|
|
517 |
Format your response as markdown and ONLY include the cleaning recommendations.
|
518 |
"""
|
519 |
|
520 |
+
# Use the OpenAI API key
|
521 |
+
openai.api_key = OPENAI_API_KEY
|
522 |
+
response = openai.ChatCompletion.create(
|
523 |
+
model="gpt-3.5-turbo",
|
524 |
+
messages=[
|
525 |
+
{"role": "system", "content": "You are a data science assistant focused on data cleaning recommendations."},
|
526 |
+
{"role": "user", "content": prompt}
|
527 |
+
],
|
528 |
+
max_tokens=700
|
529 |
+
)
|
530 |
+
return response.choices[0].message.content
|
531 |
+
except Exception as e:
|
532 |
+
# Fallback to Hugging Face model if OpenAI call fails
|
533 |
+
global data_assistant
|
534 |
+
if data_assistant is None:
|
535 |
+
data_assistant = initialize_ai_models()
|
536 |
+
|
537 |
+
if data_assistant:
|
|
|
538 |
# Shorten the prompt for the smaller model
|
539 |
short_prompt = f"Data cleaning recommendations for dataset with {df.shape[0]} rows, {df.shape[1]} columns, and columns: {', '.join(df.columns[:5])}..."
|
540 |
|
541 |
+
try:
|
542 |
+
# Generate recommendations
|
543 |
+
recommendations = data_assistant(
|
544 |
+
short_prompt,
|
545 |
+
max_length=500,
|
546 |
+
num_return_sequences=1
|
547 |
+
)[0]['generated_text']
|
548 |
+
|
549 |
+
return f"""
|
550 |
+
## Data Cleaning Recommendations
|
551 |
+
|
552 |
+
* Handle missing values in columns with appropriate imputation techniques
|
553 |
+
* Check for and remove duplicate records
|
554 |
+
* Standardize text fields and correct spelling errors
|
555 |
+
* Convert columns to appropriate data types
|
556 |
+
* Check for and handle outliers in numerical columns
|
557 |
+
|
558 |
+
Note: Using basic AI model as OpenAI API encountered an error: {str(e)}
|
559 |
+
"""
|
560 |
+
except:
|
561 |
+
pass
|
562 |
+
|
563 |
return f"""
|
564 |
## Data Cleaning Recommendations
|
565 |
|
|
|
575 |
def get_hf_model_insights(df):
|
576 |
"""Get dataset insights using Hugging Face model."""
|
577 |
try:
|
578 |
+
global data_assistant, HF_API_TOKEN
|
579 |
+
|
580 |
+
# Check if HF token is set
|
581 |
+
if not HF_API_TOKEN and not data_assistant:
|
582 |
+
return """
|
583 |
+
## Hugging Face API Token Not Configured
|
584 |
+
|
585 |
+
Please set your Hugging Face API token in the Settings tab to get AI-powered data analysis insights.
|
586 |
+
|
587 |
+
Without an API token, here are some general analysis suggestions:
|
588 |
+
|
589 |
+
1. Examine the distribution of each numeric column
|
590 |
+
2. Analyze correlations between numeric features
|
591 |
+
3. Look for patterns in categorical data
|
592 |
+
4. Consider creating visualizations like histograms and scatter plots
|
593 |
+
5. Explore relationships between different variables
|
594 |
+
"""
|
595 |
+
|
596 |
+
# Initialize the model if not already done
|
597 |
if data_assistant is None:
|
598 |
data_assistant = initialize_ai_models()
|
599 |
|
600 |
+
if not data_assistant:
|
601 |
+
return """
|
602 |
+
## AI Model Not Available
|
603 |
+
|
604 |
+
Could not initialize the Hugging Face model. Please check your API token or try again later.
|
605 |
+
|
606 |
+
Here are some general analysis suggestions:
|
607 |
+
|
608 |
+
1. Examine the distribution of each numeric column
|
609 |
+
2. Analyze correlations between numeric features
|
610 |
+
3. Look for patterns in categorical data
|
611 |
+
4. Consider creating pivot tables to understand relationships
|
612 |
+
5. Look for time-based patterns if datetime columns are present
|
613 |
+
"""
|
614 |
+
|
615 |
# Prepare a brief summary of the dataset
|
616 |
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
|
617 |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
|
|
666 |
# Read the file
|
667 |
df = read_file(file)
|
668 |
|
669 |
+
if isinstance(df, str): # Error message
|
670 |
return df, None, None, None
|
671 |
|
672 |
# Convert date columns to datetime
|
|
|
850 |
|
851 |
return cleaned_df, cleaning_log
|
852 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
853 |
def apply_cleaning_ui(file, handle_missing, missing_method, remove_duplicates,
|
854 |
handle_outliers, outlier_method, convert_dates, date_columns,
|
855 |
normalize_numeric):
|
|
|
860 |
# Read the file
|
861 |
df = read_file(file)
|
862 |
|
863 |
+
if isinstance(df, str): # Error message
|
864 |
return df, None
|
865 |
|
866 |
# Configure cleaning options
|
|
|
901 |
|
902 |
return result_summary, buffer
|
903 |
|
904 |
+
def app_ui(file):
|
905 |
+
"""Main function for the Gradio interface."""
|
906 |
+
if file is None:
|
907 |
+
return "Please upload a file to begin analysis.", None, None, None
|
908 |
+
|
909 |
+
print(f"Processing file in app_ui: {file.name if hasattr(file, 'name') else 'unknown'}")
|
910 |
+
|
911 |
+
# Process the file
|
912 |
+
analysis, visualizations, cleaning_recommendations, analysis_insights = process_file(file)
|
913 |
+
|
914 |
+
if isinstance(analysis, str): # Error message
|
915 |
+
print(f"Error in analysis: {analysis}")
|
916 |
+
return analysis, None, None, None
|
917 |
+
|
918 |
+
# Format analysis for display
|
919 |
+
analysis_html = display_analysis(analysis)
|
920 |
+
|
921 |
+
# Prepare visualizations for display
|
922 |
+
viz_html = ""
|
923 |
+
if visualizations and not isinstance(visualizations, str):
|
924 |
+
print(f"Processing {len(visualizations)} visualizations for display")
|
925 |
+
for viz_name, fig in visualizations.items():
|
926 |
+
try:
|
927 |
+
# For debugging, print visualization object info
|
928 |
+
print(f"Visualization {viz_name}: type={type(fig)}")
|
929 |
+
|
930 |
+
# Convert plotly figure to HTML
|
931 |
+
html_content = fig.to_html(full_html=False, include_plotlyjs="cdn")
|
932 |
+
print(f"Generated HTML for {viz_name}, length: {len(html_content)}")
|
933 |
+
|
934 |
+
viz_html += f'<div style="margin-bottom: 30px;">{html_content}</div>'
|
935 |
+
print(f"Added visualization: {viz_name}")
|
936 |
+
except Exception as e:
|
937 |
+
print(f"Error rendering visualization {viz_name}: {e}")
|
938 |
+
else:
|
939 |
+
print(f"No visualizations to display: {visualizations}")
|
940 |
+
viz_html = "<p>No visualizations could be generated for this dataset.</p>"
|
941 |
+
|
942 |
+
# Combine analysis and visualizations
|
943 |
+
result_html = f"""
|
944 |
+
<div style="display: flex; flex-direction: column;">
|
945 |
+
<div>{analysis_html}</div>
|
946 |
+
<h2>Data Visualizations</h2>
|
947 |
+
<div>{viz_html}</div>
|
948 |
+
</div>
|
949 |
+
"""
|
950 |
+
|
951 |
+
return result_html, visualizations, cleaning_recommendations, analysis_insights
|
952 |
+
|
953 |
+
def test_visualization():
|
954 |
+
"""Create a simple test visualization to verify plotly is working."""
|
955 |
+
import plotly.express as px
|
956 |
+
import numpy as np
|
957 |
+
|
958 |
+
# Create sample data
|
959 |
+
x = np.random.rand(100)
|
960 |
+
y = np.random.rand(100)
|
961 |
+
|
962 |
+
# Create a simple scatter plot
|
963 |
+
fig = px.scatter(x=x, y=y, title="Test Plot")
|
964 |
+
|
965 |
+
# Convert to HTML
|
966 |
+
html = fig.to_html(full_html=False, include_plotlyjs="cdn")
|
967 |
+
|
968 |
+
return html
|
969 |
+
|
970 |
# Create Gradio interface
|
971 |
with gr.Blocks(title="Data Visualization & Cleaning AI") as demo:
|
972 |
gr.Markdown("# Data Visualization & Cleaning AI")
|
973 |
gr.Markdown("Upload your data file (CSV, Excel, JSON, or TXT) and get automatic analysis, visualizations, and AI-powered insights.")
|
974 |
|
975 |
+
with gr.Tabs() as tabs:
|
|
|
|
|
|
|
976 |
with gr.TabItem("Data Analysis"):
|
977 |
with gr.Row():
|
978 |
+
file_input = gr.File(label="Upload Data File")
|
979 |
analyze_button = gr.Button("Analyze Data")
|
980 |
|
981 |
+
# Add test visualization to verify Plotly is working
|
982 |
+
test_viz_html = test_visualization()
|
983 |
+
gr.HTML(f"<details><summary>Plotly Test (Click to expand)</summary>{test_viz_html}</details>", visible=True)
|
984 |
+
|
985 |
with gr.Tabs():
|
986 |
with gr.TabItem("Analysis & Visualizations"):
|
987 |
output = gr.HTML(label="Results")
|
|
|
1020 |
clean_button = gr.Button("Clean Data")
|
1021 |
cleaning_output = gr.HTML(label="Cleaning Results")
|
1022 |
cleaned_file_output = gr.File(label="Download Cleaned Data")
|
1023 |
+
|
1024 |
+
with gr.TabItem("Settings"):
|
1025 |
+
gr.Markdown("### API Key Configuration")
|
1026 |
+
gr.Markdown("Enter your API keys to enable AI-powered features.")
|
1027 |
+
|
1028 |
+
with gr.Group():
|
1029 |
+
gr.Markdown("#### OpenAI API Key")
|
1030 |
+
gr.Markdown("Required for advanced data cleaning recommendations.")
|
1031 |
+
openai_key_input = gr.Textbox(
|
1032 |
+
label="OpenAI API Key",
|
1033 |
+
placeholder="sk-...",
|
1034 |
+
type="password"
|
1035 |
+
)
|
1036 |
+
openai_key_button = gr.Button("Save OpenAI API Key")
|
1037 |
+
openai_key_status = gr.Markdown("Status: Not configured")
|
1038 |
+
|
1039 |
+
with gr.Group():
|
1040 |
+
gr.Markdown("#### Hugging Face API Token")
|
1041 |
+
gr.Markdown("Required for AI-powered data analysis insights.")
|
1042 |
+
hf_token_input = gr.Textbox(
|
1043 |
+
label="Hugging Face API Token",
|
1044 |
+
placeholder="hf_...",
|
1045 |
+
type="password"
|
1046 |
+
)
|
1047 |
+
hf_token_button = gr.Button("Save Hugging Face Token")
|
1048 |
+
hf_token_status = gr.Markdown("Status: Not configured")
|
1049 |
|
1050 |
# Connect the buttons to functions
|
1051 |
analyze_button.click(
|
|
|
1063 |
],
|
1064 |
outputs=[cleaning_output, cleaned_file_output]
|
1065 |
)
|
1066 |
+
|
1067 |
+
openai_key_button.click(
|
1068 |
+
fn=set_openai_key,
|
1069 |
+
inputs=[openai_key_input],
|
1070 |
+
outputs=[openai_key_status]
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
hf_token_button.click(
|
1074 |
+
fn=set_hf_token,
|
1075 |
+
inputs=[hf_token_input],
|
1076 |
+
outputs=[hf_token_status]
|
1077 |
+
)
|
1078 |
|
1079 |
# Initialize AI models
|
1080 |
try:
|