Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.neighbors import KNeighborsClassifier
|
4 |
+
|
5 |
+
def get_user_data():
|
6 |
+
data_points = []
|
7 |
+
labels = []
|
8 |
+
|
9 |
+
for i in range(5):
|
10 |
+
x = st.number_input(f"Enter x-coordinate for data point {i + 1}:")
|
11 |
+
y = st.number_input(f"Enter y-coordinate for data point {i + 1}:")
|
12 |
+
label = st.text_input(f"Enter label for data point {i + 1}:")
|
13 |
+
|
14 |
+
data_points.append([x, y])
|
15 |
+
labels.append(label)
|
16 |
+
|
17 |
+
return np.array(data_points), np.array(labels)
|
18 |
+
|
19 |
+
def knn_classification(X, y, k_value):
|
20 |
+
knn_classifier = KNeighborsClassifier(n_neighbors=k_value)
|
21 |
+
knn_classifier.fit(X, y)
|
22 |
+
predictions = knn_classifier.predict(X)
|
23 |
+
return predictions
|
24 |
+
|
25 |
+
def main():
|
26 |
+
st.title("K-Nearest Neighbor Classification App")
|
27 |
+
|
28 |
+
# Get user-defined data
|
29 |
+
X, y = get_user_data()
|
30 |
+
|
31 |
+
# Choose the value of k
|
32 |
+
k_value = st.slider("Choose the value of k for k-nearest neighbors:", min_value=1, max_value=10, value=3)
|
33 |
+
|
34 |
+
# Perform k-nearest neighbor classification
|
35 |
+
predictions = knn_classification(X, y, k_value)
|
36 |
+
|
37 |
+
# Display results
|
38 |
+
st.subheader("Results:")
|
39 |
+
st.write("User-defined Data Points:")
|
40 |
+
st.write(X)
|
41 |
+
st.write("User-defined Labels:")
|
42 |
+
st.write(y)
|
43 |
+
st.write(f"\nK-Nearest Neighbor Classification (k={k_value}):")
|
44 |
+
st.write("Predicted Labels:")
|
45 |
+
st.write(predictions)
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
main()
|