Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import streamlit as st
|
|
2 |
import numpy as np
|
3 |
from sklearn.neighbors import KNeighborsClassifier
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
st.set_option('deprecation.showPyplotGlobalUse', False)
|
6 |
-
|
7 |
|
8 |
def get_user_data_train():
|
9 |
data_points = []
|
@@ -45,7 +43,8 @@ def plot_training_and_test_data(X_train, y_train, X_test, predictions):
|
|
45 |
plt.scatter(X_train[indices, 0], X_train[indices, 1], label=f'Training ({label})')
|
46 |
|
47 |
# Plot test data with predicted labels
|
48 |
-
|
|
|
49 |
|
50 |
plt.xlabel('X-coordinate')
|
51 |
plt.ylabel('Y-coordinate')
|
|
|
2 |
import numpy as np
|
3 |
from sklearn.neighbors import KNeighborsClassifier
|
4 |
import matplotlib.pyplot as plt
|
|
|
|
|
5 |
|
6 |
def get_user_data_train():
|
7 |
data_points = []
|
|
|
43 |
plt.scatter(X_train[indices, 0], X_train[indices, 1], label=f'Training ({label})')
|
44 |
|
45 |
# Plot test data with predicted labels
|
46 |
+
numerical_predictions = np.arange(len(np.unique(predictions)))
|
47 |
+
plt.scatter(X_test[:, 0], X_test[:, 1], label=f'Test (Predicted Labels)', marker='x', c=numerical_predictions[predictions])
|
48 |
|
49 |
plt.xlabel('X-coordinate')
|
50 |
plt.ylabel('Y-coordinate')
|