Hemavathineelirothu commited on
Commit
ed3ae4f
Β·
verified Β·
1 Parent(s): 4319ec6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -60
app.py CHANGED
@@ -1,64 +1,56 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from datasets import load_dataset
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
4
+
5
+ # Load dataset (replace 'daily_dialog' with your dataset)
6
+
7
+ dataset = load_dataset("nazlicanto/persona-based-chat")
8
+
9
+ # Choose a base model (DialoGPT)
10
+ model_name = "microsoft/DialoGPT-small"
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+ model = AutoModelForCausalLM.from_pretrained(model_name)
13
+
14
+ # Preprocess the dataset
15
+ def preprocess_data(example):
16
+ input_text = "User: " + example["dialog"][0] + " Bot: " + example["dialog"][1]
17
+ return tokenizer(input_text, truncation=True, padding="max_length", max_length=128)
18
+
19
+ tokenized_dataset = dataset.map(preprocess_data, batched=True)
20
+
21
+ # Training arguments
22
+ training_args = TrainingArguments(
23
+ output_dir="./chatbot_model",
24
+ evaluation_strategy="steps",
25
+ eval_steps=500,
26
+ save_steps=1000,
27
+ per_device_train_batch_size=4,
28
+ per_device_eval_batch_size=4,
29
+ num_train_epochs=3,
30
+ save_total_limit=2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  )
32
 
33
+ trainer = Trainer(
34
+ model=model,
35
+ args=training_args,
36
+ train_dataset=tokenized_dataset["train"],
37
+ eval_dataset=tokenized_dataset["validation"],
38
+ tokenizer=tokenizer,
39
+ )
40
 
41
+ # Train the model
42
+ def train_model():
43
+ trainer.train()
44
+ model.save_pretrained("trained_chatbot")
45
+ tokenizer.save_pretrained("trained_chatbot")
46
+ return "Training Complete!"
47
+
48
+ # Chat interface
49
+ def chatbot(user_input):
50
+ inputs = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
51
+ outputs = model.generate(inputs, max_length=150, pad_token_id=tokenizer.eos_token_id)
52
+ return tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
53
+
54
+ # Gradio UI
55
+ iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", live=True)
56
+ iface.launch()