Spaces:
Running
Running
File size: 8,589 Bytes
f32d4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
"""
Tokenization Analysis
=====================
Core analysis functions for evaluating tokenizers
"""
import time
from typing import Tuple
from config import TokenizerInfo, TokenizationMetrics
from utils import count_arabic_chars, get_arabic_words, has_diacritics, is_arabic_char
from tokenizer_manager import tokenizer_manager
def analyze_tokenization(
text: str,
model_id: str,
tokenizer_info: TokenizerInfo
) -> TokenizationMetrics:
"""Perform comprehensive tokenization analysis"""
tokenizer = tokenizer_manager.get_tokenizer(model_id)
# Time the tokenization
start_time = time.perf_counter()
tokens = tokenizer.tokenize(text)
token_ids = tokenizer.encode(text, add_special_tokens=False)
tokenization_time = (time.perf_counter() - start_time) * 1000
decoded = tokenizer.decode(token_ids, skip_special_tokens=True)
# Basic counts
words = text.split()
total_words = len(words)
total_tokens = len(tokens)
total_characters = len(text)
total_bytes = len(text.encode('utf-8'))
# Efficiency metrics
fertility = total_tokens / max(total_words, 1)
compression_ratio = total_bytes / max(total_tokens, 1)
char_per_token = total_characters / max(total_tokens, 1)
# OOV analysis
unk_token = tokenizer.unk_token if hasattr(tokenizer, 'unk_token') else '[UNK]'
oov_count = sum(1 for t in tokens if t == unk_token or '[UNK]' in str(t))
oov_percentage = (oov_count / max(total_tokens, 1)) * 100
# Single Token Retention Rate (STRR)
single_token_words = 0
subwords_per_word = []
for word in words:
word_tokens = tokenizer.tokenize(word)
subwords_per_word.append(len(word_tokens))
if len(word_tokens) == 1:
single_token_words += 1
strr = single_token_words / max(total_words, 1)
avg_subwords = sum(subwords_per_word) / max(len(subwords_per_word), 1)
max_subwords = max(subwords_per_word) if subwords_per_word else 0
continued_ratio = (total_words - single_token_words) / max(total_words, 1)
# Arabic-specific metrics
arabic_char_count = count_arabic_chars(text)
arabic_words = get_arabic_words(text)
arabic_tokens_count = 0
for token in tokens:
if any(is_arabic_char(c) for c in str(token)):
arabic_tokens_count += 1
arabic_fertility = arabic_tokens_count / max(len(arabic_words), 1) if arabic_words else 0
diacritic_preserved = has_diacritics(text) == has_diacritics(decoded)
return TokenizationMetrics(
total_tokens=total_tokens,
total_words=total_words,
total_characters=total_characters,
total_bytes=total_bytes,
fertility=fertility,
compression_ratio=compression_ratio,
char_per_token=char_per_token,
oov_count=oov_count,
oov_percentage=oov_percentage,
single_token_words=single_token_words,
single_token_retention_rate=strr,
avg_subwords_per_word=avg_subwords,
max_subwords_per_word=max_subwords,
continued_words_ratio=continued_ratio,
arabic_char_count=arabic_char_count,
arabic_token_count=arabic_tokens_count,
arabic_fertility=arabic_fertility,
diacritic_preservation=diacritic_preserved,
tokenization_time_ms=tokenization_time,
tokens=tokens,
token_ids=token_ids,
decoded_text=decoded
)
def analyze_single_tokenizer(tokenizer_choice: str, text: str) -> Tuple[str, str, str, str]:
"""Analyze a single tokenizer - returns HTML outputs"""
from ui_components import (
generate_tokenizer_info_card,
generate_metrics_card,
generate_token_visualization,
generate_decoded_section
)
if not text or not text.strip():
return (
'<div class="warning">⚠️ Please enter some text to analyze</div>',
'', '', ''
)
if not tokenizer_choice:
return (
'<div class="warning">⚠️ Please select a tokenizer</div>',
'', '', ''
)
model_id = tokenizer_manager.get_model_id_from_choice(tokenizer_choice)
tokenizer_info = tokenizer_manager.get_available_tokenizers().get(model_id)
if not tokenizer_info:
return (
'<div class="error-card"><h4>Error</h4><p>Tokenizer not found</p></div>',
'', '', ''
)
try:
metrics = analyze_tokenization(text, model_id, tokenizer_info)
info_html = generate_tokenizer_info_card(tokenizer_info)
metrics_html = generate_metrics_card(metrics, tokenizer_info)
tokens_html = generate_token_visualization(metrics.tokens, metrics.token_ids)
decoded_html = generate_decoded_section(metrics)
return info_html, metrics_html, tokens_html, decoded_html
except Exception as e:
return (
f'<div class="error-card"><h4>Error</h4><p>{str(e)}</p></div>',
'', '', ''
)
def compare_tokenizers(tokenizer_choices: list, text: str) -> str:
"""Compare multiple tokenizers - returns HTML table"""
from config import TokenizationMetrics
if not text or not text.strip():
return '<div class="warning">⚠️ Please enter some text to analyze</div>'
if not tokenizer_choices or len(tokenizer_choices) < 2:
return '<div class="warning">⚠️ Please select at least 2 tokenizers to compare</div>'
results = []
for choice in tokenizer_choices:
model_id = tokenizer_manager.get_model_id_from_choice(choice)
tokenizer_info = tokenizer_manager.get_available_tokenizers().get(model_id)
if tokenizer_info:
try:
metrics = analyze_tokenization(text, model_id, tokenizer_info)
results.append({
'name': tokenizer_info.name,
'org': tokenizer_info.organization,
'type': tokenizer_info.type.value,
'metrics': metrics
})
except Exception as e:
results.append({
'name': tokenizer_info.name,
'org': tokenizer_info.organization,
'type': tokenizer_info.type.value,
'error': str(e)
})
# Sort by fertility (lower is better)
def get_fertility(x):
if 'error' in x:
return 999
return x['metrics'].fertility
results.sort(key=get_fertility)
# Generate comparison table
html = '''
<div class="comparison-container">
<table class="comparison-table">
<thead>
<tr>
<th>Rank</th>
<th>Tokenizer</th>
<th>Type</th>
<th>Tokens</th>
<th>Fertility ↓</th>
<th>Compression ↑</th>
<th>STRR ↑</th>
<th>OOV %</th>
</tr>
</thead>
<tbody>
'''
for i, result in enumerate(results):
rank = i + 1
rank_class = 'rank-1' if rank == 1 else 'rank-2' if rank == 2 else 'rank-3' if rank == 3 else ''
if 'error' in result:
html += f'''
<tr class="{rank_class}">
<td>#{rank}</td>
<td><strong>{result['name']}</strong><br><small>{result['org']}</small></td>
<td>{result['type']}</td>
<td colspan="5" class="error">Error: {result['error']}</td>
</tr>
'''
else:
m = result['metrics']
fertility_class = 'excellent' if m.fertility < 1.5 else 'good' if m.fertility < 2.5 else 'poor'
html += f'''
<tr class="{rank_class}">
<td><strong>#{rank}</strong></td>
<td><strong>{result['name']}</strong><br><small>{result['org']}</small></td>
<td>{result['type']}</td>
<td>{m.total_tokens}</td>
<td class="{fertility_class}">{m.fertility:.3f}</td>
<td>{m.compression_ratio:.2f}</td>
<td>{m.single_token_retention_rate:.1%}</td>
<td>{m.oov_percentage:.1f}%</td>
</tr>
'''
html += '''
</tbody>
</table>
</div>
'''
return html
|