File size: 20,758 Bytes
aa4fdd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import os.path as osp
from typing import List
import math
import time
import hashlib
import yaml
import argparse
import shutil
import re

import sys
sys.path.append('./')

import cv2
import numpy as np
import torch
torch._dynamo.config.cache_size_limit=64
import pandas as pd
from transformers import AutoTokenizer, T5EncoderModel, T5TokenizerFast
from PIL import Image, ImageEnhance
import torch.nn.functional as F
from torch.cuda.amp import autocast

from infinity.models.infinity import Infinity
from infinity.models.basic import *
import PIL.Image as PImage
from torchvision.transforms.functional import to_tensor
from infinity.utils.dynamic_resolution import dynamic_resolution_h_w, h_div_w_templates


def extract_key_val(text):
    pattern = r'<(.+?):(.+?)>'
    matches = re.findall(pattern, text)
    key_val = {}
    for match in matches:
        key_val[match[0]] = match[1].lstrip()
    return key_val

def encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt=False):
    if enable_positive_prompt:
        print(f'before positive_prompt aug: {prompt}')
        prompt = aug_with_positive_prompt(prompt)
        print(f'after positive_prompt aug: {prompt}')
    print(f'prompt={prompt}')
    captions = [prompt]
    tokens = text_tokenizer(text=captions, max_length=512, padding='max_length', truncation=True, return_tensors='pt')  # todo: put this into dataset
    input_ids = tokens.input_ids.cuda(non_blocking=True)
    mask = tokens.attention_mask.cuda(non_blocking=True)
    text_features = text_encoder(input_ids=input_ids, attention_mask=mask)['last_hidden_state'].float()
    lens: List[int] = mask.sum(dim=-1).tolist()
    cu_seqlens_k = F.pad(mask.sum(dim=-1).to(dtype=torch.int32).cumsum_(0), (1, 0))
    Ltext = max(lens)    
    kv_compact = []
    for len_i, feat_i in zip(lens, text_features.unbind(0)):
        kv_compact.append(feat_i[:len_i])
    kv_compact = torch.cat(kv_compact, dim=0)
    text_cond_tuple = (kv_compact, lens, cu_seqlens_k, Ltext)
    return text_cond_tuple

def aug_with_positive_prompt(prompt):
    for key in ['man', 'woman', 'men', 'women', 'boy', 'girl', 'child', 'person', 'human', 'adult', 'teenager', 'employee', 
                'employer', 'worker', 'mother', 'father', 'sister', 'brother', 'grandmother', 'grandfather', 'son', 'daughter']:
        if key in prompt:
            prompt = prompt + '. very smooth faces, good looking faces, face to the camera, perfect facial features'
            break
    return prompt

def enhance_image(image):
    for t in range(1):
        contrast_image = image.copy()
        contrast_enhancer = ImageEnhance.Contrast(contrast_image)
        contrast_image = contrast_enhancer.enhance(1.05)  # 增强对比度
        color_image = contrast_image.copy()
        color_enhancer = ImageEnhance.Color(color_image)
        color_image = color_enhancer.enhance(1.05)  # 增强饱和度
    return color_image

def get_image_prefix(input_raw_features, vae, scale_schedule, apply_spatial_patchify=False):
    with torch.amp.autocast('cuda', enabled = False):
        if apply_spatial_patchify:
            vae_scale_schedule = [(pt, 2*ph, 2*pw) for pt, ph, pw in scale_schedule]
        else:
            vae_scale_schedule = scale_schedule

        B = input_raw_features.shape[0]
        if input_raw_features.dim() == 4:
            codes_out = input_raw_features.unsqueeze(2)
        else:
            codes_out = input_raw_features
        cum_var_input = 0
        gt_all_bit_indices = []

        residual = F.interpolate(codes_out, size=vae_scale_schedule[-1], mode=vae.quantizer.z_interplote_down).contiguous()
        if apply_spatial_patchify:
            residual = torch.nn.functional.pixel_unshuffle(residual.squeeze(-3), 2)
        x_BLC_wo_prefix = residual.reshape(*residual.shape[:2], -1).permute(0,2,1)

    return x_BLC_wo_prefix

def gen_one_img(
    infinity_test, 
    vae, 
    text_tokenizer,
    text_encoder,
    prompt, 
    src_img_3HW,
    cfg_list=[],
    tau_list=[],
    negative_prompt='',
    scale_schedule=None,
    top_k=900,
    top_p=0.97,
    cfg_sc=3,
    cfg_exp_k=0.0,
    cfg_insertion_layer=-5,
    vae_type=0,
    gumbel=0,
    softmax_merge_topk=-1,
    gt_leak=-1,
    gt_ls_Bl=None,
    g_seed=None,
    sampling_per_bits=1,
    enable_positive_prompt=0,
    apply_spatial_patchify=False,
):
    sstt = time.time()
    if not isinstance(cfg_list, list):
        cfg_list = [cfg_list] * len(scale_schedule)
    if not isinstance(tau_list, list):
        tau_list = [tau_list] * len(scale_schedule)
    text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt)
    if negative_prompt:
        negative_label_B_or_BLT = encode_prompt(text_tokenizer, text_encoder, negative_prompt)
    else:
        negative_label_B_or_BLT = None

    src_img_3HW = src_img_3HW.unsqueeze(0).to('cuda', non_blocking=True)
    src_img_features, _, _ = vae.encode_for_raw_features(src_img_3HW, scale_schedule=scale_schedule)
    print(f'cfg: {cfg_list}, tau: {tau_list}')

    src_img_prefix = get_image_prefix(src_img_features, vae, scale_schedule, apply_spatial_patchify)

    with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True):
        stt = time.time()
        _, pred_gt, img_list = infinity_test.autoregressive_infer_cfg(
            vae=vae,
            scale_schedule=scale_schedule, 
            src_img_prefix=src_img_prefix,
            label_B_or_BLT=text_cond_tuple, g_seed=g_seed,
            B=1, negative_label_B_or_BLT=negative_label_B_or_BLT, force_gt_Bhw=None,
            cfg_sc=cfg_sc, cfg_list=cfg_list, tau_list=tau_list, top_k=top_k, top_p=top_p,
            returns_vemb=1, ratio_Bl1=None, gumbel=gumbel, norm_cfg=False,
            cfg_exp_k=cfg_exp_k, cfg_insertion_layer=cfg_insertion_layer,
            vae_type=vae_type, softmax_merge_topk=softmax_merge_topk,
            ret_img=True, trunk_scale=1000,
            gt_leak=gt_leak, gt_ls_Bl=gt_ls_Bl, inference_mode=True,
            sampling_per_bits=sampling_per_bits,
        )

    print(f"cost: {time.time() - sstt}, infinity cost={time.time() - stt}")
    img = img_list[0]
    return img

def get_prompt_id(prompt):
    md5 = hashlib.md5()
    md5.update(prompt.encode('utf-8'))
    prompt_id = md5.hexdigest()
    return prompt_id

def save_slim_model(infinity_model_path, save_file=None, device='cpu', key='gpt_fsdp'):
    print('[Save slim model]')
    full_ckpt = torch.load(infinity_model_path, map_location=device)
    infinity_slim = full_ckpt['trainer'][key]
    # ema_state_dict = cpu_d['trainer'].get('gpt_ema_fsdp', state_dict)
    if not save_file:
        save_file = osp.splitext(infinity_model_path)[0] + '-slim.pth'
    print(f'Save to {save_file}')
    torch.save(infinity_slim, save_file)
    print('[Save slim model] done')
    return save_file

def load_tokenizer(t5_path =''):
    print(f'[Loading tokenizer and text encoder]')
    text_tokenizer: T5TokenizerFast = AutoTokenizer.from_pretrained(t5_path, revision=None, legacy=True)
    text_tokenizer.model_max_length = 512
    text_encoder: T5EncoderModel = T5EncoderModel.from_pretrained(t5_path, torch_dtype=torch.float16)
    text_encoder.to('cuda')
    text_encoder.eval()
    text_encoder.requires_grad_(False)
    return text_tokenizer, text_encoder

def load_infinity(
    rope2d_each_sa_layer, 
    rope2d_normalized_by_hw, 
    use_scale_schedule_embedding, 
    pn, 
    use_bit_label, 
    add_lvl_embeding_only_first_block, 
    model_path='', 
    scale_schedule=None, 
    vae=None, 
    device='cuda', 
    model_kwargs=None,
    text_channels=2048,
    apply_spatial_patchify=0,
    use_flex_attn=False,
    bf16=False,
    checkpoint_type='torch',
):
    print(f'[Loading Infinity]')
    text_maxlen = 512
    with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True), torch.no_grad():
        infinity_test: Infinity = Infinity(
            vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen,
            shared_aln=True, raw_scale_schedule=scale_schedule,
            checkpointing='full-block',
            customized_flash_attn=False,
            fused_norm=True,
            pad_to_multiplier=128,
            use_flex_attn=use_flex_attn,
            add_lvl_embeding_only_first_block=add_lvl_embeding_only_first_block,
            use_bit_label=use_bit_label,
            rope2d_each_sa_layer=rope2d_each_sa_layer,
            rope2d_normalized_by_hw=rope2d_normalized_by_hw,
            pn=pn,
            apply_spatial_patchify=apply_spatial_patchify,
            inference_mode=True,
            train_h_div_w_list=[1.0],
            **model_kwargs,
        ).to(device=device)
        print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}')

        if bf16:
            for block in infinity_test.unregistered_blocks:
                block.bfloat16()

        infinity_test.eval()
        infinity_test.requires_grad_(False)

        infinity_test.cuda()
        torch.cuda.empty_cache()

        print(f'[Load Infinity weights]')
        if checkpoint_type == 'torch':
            state_dict = torch.load(model_path, map_location=device)
            print(infinity_test.load_state_dict(state_dict))
        elif checkpoint_type == 'torch_shard':
            from transformers.modeling_utils import load_sharded_checkpoint
            load_sharded_checkpoint(infinity_test, model_path, strict=False)
        infinity_test.rng = torch.Generator()
        return infinity_test

def transform(pil_img, tgt_h, tgt_w):
    width, height = pil_img.size
    if width / height <= tgt_w / tgt_h:
        resized_width = tgt_w
        resized_height = int(tgt_w / (width / height))
    else:
        resized_height = tgt_h
        resized_width = int((width / height) * tgt_h)
    pil_img = pil_img.resize((resized_width, resized_height), resample=PImage.LANCZOS)
    # crop the center out
    arr = np.array(pil_img)
    crop_y = (arr.shape[0] - tgt_h) // 2
    crop_x = (arr.shape[1] - tgt_w) // 2
    im = to_tensor(arr[crop_y: crop_y + tgt_h, crop_x: crop_x + tgt_w])
    return im.add(im).add_(-1)

def joint_vi_vae_encode_decode(vae, image_path, scale_schedule, device, tgt_h, tgt_w):
    pil_image = Image.open(image_path).convert('RGB')
    inp = transform(pil_image, tgt_h, tgt_w)
    inp = inp.unsqueeze(0).to(device)
    scale_schedule = [(item[0], item[1], item[2]) for item in scale_schedule]
    t1 = time.time()
    h, z, _, all_bit_indices, _, infinity_input = vae.encode(inp, scale_schedule=scale_schedule)
    t2 = time.time()
    recons_img = vae.decode(z)[0]
    if len(recons_img.shape) == 4:
        recons_img = recons_img.squeeze(1)
    print(f'recons: z.shape: {z.shape}, recons_img shape: {recons_img.shape}')
    t3 = time.time()
    print(f'vae encode takes {t2-t1:.2f}s, decode takes {t3-t2:.2f}s')
    recons_img = (recons_img + 1) / 2
    recons_img = recons_img.permute(1, 2, 0).mul_(255).cpu().numpy().astype(np.uint8)
    gt_img = (inp[0] + 1) / 2
    gt_img = gt_img.permute(1, 2, 0).mul_(255).cpu().numpy().astype(np.uint8)
    print(recons_img.shape, gt_img.shape)
    return gt_img, recons_img, all_bit_indices

def load_visual_tokenizer(args):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # load vae
    if args.vae_type in [14,16,18,20,24,32,64]:
        from infinity.models.bsq_vae.vae import vae_model
        schedule_mode = "dynamic"
        codebook_dim = args.vae_type
        codebook_size = 2**codebook_dim
        if args.apply_spatial_patchify:
            patch_size = 8
            encoder_ch_mult=[1, 2, 4, 4]
            decoder_ch_mult=[1, 2, 4, 4]
        else:
            patch_size = 16
            encoder_ch_mult=[1, 2, 4, 4, 4]
            decoder_ch_mult=[1, 2, 4, 4, 4]
        vae = vae_model(args.vae_path, schedule_mode, codebook_dim, codebook_size, patch_size=patch_size, 
                        encoder_ch_mult=encoder_ch_mult, decoder_ch_mult=decoder_ch_mult, test_mode=True).to(device)
    else:
        raise ValueError(f'vae_type={args.vae_type} not supported')
    return vae

def load_transformer(vae, args):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model_path = args.model_path
    if args.checkpoint_type == 'torch': 
        # copy large model to local; save slim to local; and copy slim to nas; load local slim model
        if osp.exists(args.cache_dir):
            local_model_path = osp.join(args.cache_dir, 'tmp', model_path.replace('/', '_'))
        else:
            local_model_path = model_path
        if args.enable_model_cache:
            slim_model_path = model_path.replace('ar-', 'slim-')
            local_slim_model_path = local_model_path.replace('ar-', 'slim-')
            os.makedirs(osp.dirname(local_slim_model_path), exist_ok=True)
            print(f'model_path: {model_path}, slim_model_path: {slim_model_path}')
            print(f'local_model_path: {local_model_path}, local_slim_model_path: {local_slim_model_path}')
            if not osp.exists(local_slim_model_path):
                if osp.exists(slim_model_path):
                    print(f'copy {slim_model_path} to {local_slim_model_path}')
                    shutil.copyfile(slim_model_path, local_slim_model_path)
                else:
                    if not osp.exists(local_model_path):
                        print(f'copy {model_path} to {local_model_path}')
                        shutil.copyfile(model_path, local_model_path)
                    save_slim_model(local_model_path, save_file=local_slim_model_path, device=device)
                    print(f'copy {local_slim_model_path} to {slim_model_path}')
                    if not osp.exists(slim_model_path):
                        shutil.copyfile(local_slim_model_path, slim_model_path)
                        os.remove(local_model_path)
                        os.remove(model_path)
            slim_model_path = local_slim_model_path
        else:
            slim_model_path = model_path
        print(f'load checkpoint from {slim_model_path}')
    elif args.checkpoint_type == 'torch_shard':
        slim_model_path = model_path

    if args.model_type == 'infinity_2b':
        kwargs_model = dict(depth=32, embed_dim=2048, num_heads=2048//128, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8) # 2b model
    elif args.model_type == 'infinity_8b':
        kwargs_model = dict(depth=40, embed_dim=3584, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8)
    elif args.model_type == 'infinity_layer12':
        kwargs_model = dict(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
    elif args.model_type == 'infinity_layer16':
        kwargs_model = dict(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
    elif args.model_type == 'infinity_layer24':
        kwargs_model = dict(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
    elif args.model_type == 'infinity_layer32':
        kwargs_model = dict(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
    elif args.model_type == 'infinity_layer40':
        kwargs_model = dict(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
    elif args.model_type == 'infinity_layer48':
        kwargs_model = dict(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
    infinity = load_infinity(
        rope2d_each_sa_layer=args.rope2d_each_sa_layer, 
        rope2d_normalized_by_hw=args.rope2d_normalized_by_hw,
        use_scale_schedule_embedding=args.use_scale_schedule_embedding,
        pn=args.pn,
        use_bit_label=args.use_bit_label, 
        add_lvl_embeding_only_first_block=args.add_lvl_embeding_only_first_block, 
        model_path=slim_model_path, 
        scale_schedule=None, 
        vae=vae, 
        device=device, 
        model_kwargs=kwargs_model,
        text_channels=args.text_channels,
        apply_spatial_patchify=args.apply_spatial_patchify,
        use_flex_attn=args.use_flex_attn,
        bf16=args.bf16,
        checkpoint_type=args.checkpoint_type,
    )
    return infinity

def add_common_arguments(parser):
    parser.add_argument('--cfg', type=str, default='3')
    parser.add_argument('--tau', type=float, default=1)
    parser.add_argument('--pn', type=str, required=True, choices=['0.06M', '0.25M', '1M'])
    parser.add_argument('--model_path', type=str, required=True)
    parser.add_argument('--cfg_insertion_layer', type=int, default=0)
    parser.add_argument('--vae_type', type=int, default=1)
    parser.add_argument('--vae_path', type=str, default='')
    parser.add_argument('--add_lvl_embeding_only_first_block', type=int, default=0, choices=[0,1])
    parser.add_argument('--use_bit_label', type=int, default=1, choices=[0,1])
    parser.add_argument('--model_type', type=str, default='infinity_2b')
    parser.add_argument('--rope2d_each_sa_layer', type=int, default=1, choices=[0,1])
    parser.add_argument('--rope2d_normalized_by_hw', type=int, default=2, choices=[0,1,2])
    parser.add_argument('--use_scale_schedule_embedding', type=int, default=0, choices=[0,1])
    parser.add_argument('--sampling_per_bits', type=int, default=1, choices=[1,2,4,8,16])
    parser.add_argument('--text_encoder_ckpt', type=str, default='')
    parser.add_argument('--text_channels', type=int, default=2048)
    parser.add_argument('--apply_spatial_patchify', type=int, default=0, choices=[0,1])
    parser.add_argument('--h_div_w_template', type=float, default=1.000)
    parser.add_argument('--use_flex_attn', type=int, default=0, choices=[0,1])
    parser.add_argument('--enable_positive_prompt', type=int, default=0, choices=[0,1])
    parser.add_argument('--cache_dir', type=str, default='/dev/shm')
    parser.add_argument('--enable_model_cache', type=int, default=0, choices=[0,1])
    parser.add_argument('--checkpoint_type', type=str, default='torch')
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--bf16', type=int, default=1, choices=[0,1])
    


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    add_common_arguments(parser)
    parser.add_argument('--prompt', type=str, default='a dog')
    parser.add_argument('--src_image_path', type=str, default='./source.jpg')
    parser.add_argument('--tgt_image_path', type=str, default='./target.jpg')
    parser.add_argument('--save_file', type=str, default='./tmp.jpg')
    args = parser.parse_args()

    # parse cfg
    args.cfg = list(map(float, args.cfg.split(',')))
    if len(args.cfg) == 1:
        args.cfg = args.cfg[0]
    
    if args.pn == '0.06M':
        h, w = 256, 256
    elif args.pn == '0.25M':
        h, w = 512, 512
    elif args.pn == '1M':
        h, w = 1024, 1024

    from infinity.dataset.dataset_t2i_iterable import transform
    with open(args.src_image_path, 'rb') as f:
        src_img: PImage.Image = PImage.open(f)
        src_img = src_img.convert('RGB')
        src_img_3HW = transform(src_img, h, w)

    # src_img = (src_img_3HW + 1) / 2
    # src_img = src_img.permute(1, 2, 0).mul_(255).to(torch.uint8).flip(dims=(2,))
    # cv2.imwrite("test.jpg", src_img.cpu().numpy())

    # load text encoder
    text_tokenizer, text_encoder = load_tokenizer(t5_path =args.text_encoder_ckpt)
    # load vae
    vae = load_visual_tokenizer(args)
    # load infinity
    infinity = load_transformer(vae, args)
    
    scale_schedule = dynamic_resolution_h_w[args.h_div_w_template][args.pn]['scales']
    scale_schedule = [ (1, h, w) for (_, h, w) in scale_schedule]

    with autocast(dtype=torch.bfloat16):
        with torch.no_grad():
            generated_image = gen_one_img(
                infinity,
                vae,
                text_tokenizer,
                text_encoder,
                args.prompt,
                src_img_3HW,
                g_seed=args.seed,
                gt_leak=0,
                gt_ls_Bl=None,
                cfg_list=args.cfg,
                tau_list=args.tau,
                scale_schedule=scale_schedule,
                cfg_insertion_layer=[args.cfg_insertion_layer],
                vae_type=args.vae_type,
                sampling_per_bits=args.sampling_per_bits,
                enable_positive_prompt=args.enable_positive_prompt,
            )
    os.makedirs(osp.dirname(osp.abspath(args.save_file)), exist_ok=True)
    cv2.imwrite(args.save_file, generated_image.cpu().numpy())
    print(f'Save to {osp.abspath(args.save_file)}')