Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,758 Bytes
aa4fdd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import os.path as osp
from typing import List
import math
import time
import hashlib
import yaml
import argparse
import shutil
import re
import sys
sys.path.append('./')
import cv2
import numpy as np
import torch
torch._dynamo.config.cache_size_limit=64
import pandas as pd
from transformers import AutoTokenizer, T5EncoderModel, T5TokenizerFast
from PIL import Image, ImageEnhance
import torch.nn.functional as F
from torch.cuda.amp import autocast
from infinity.models.infinity import Infinity
from infinity.models.basic import *
import PIL.Image as PImage
from torchvision.transforms.functional import to_tensor
from infinity.utils.dynamic_resolution import dynamic_resolution_h_w, h_div_w_templates
def extract_key_val(text):
pattern = r'<(.+?):(.+?)>'
matches = re.findall(pattern, text)
key_val = {}
for match in matches:
key_val[match[0]] = match[1].lstrip()
return key_val
def encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt=False):
if enable_positive_prompt:
print(f'before positive_prompt aug: {prompt}')
prompt = aug_with_positive_prompt(prompt)
print(f'after positive_prompt aug: {prompt}')
print(f'prompt={prompt}')
captions = [prompt]
tokens = text_tokenizer(text=captions, max_length=512, padding='max_length', truncation=True, return_tensors='pt') # todo: put this into dataset
input_ids = tokens.input_ids.cuda(non_blocking=True)
mask = tokens.attention_mask.cuda(non_blocking=True)
text_features = text_encoder(input_ids=input_ids, attention_mask=mask)['last_hidden_state'].float()
lens: List[int] = mask.sum(dim=-1).tolist()
cu_seqlens_k = F.pad(mask.sum(dim=-1).to(dtype=torch.int32).cumsum_(0), (1, 0))
Ltext = max(lens)
kv_compact = []
for len_i, feat_i in zip(lens, text_features.unbind(0)):
kv_compact.append(feat_i[:len_i])
kv_compact = torch.cat(kv_compact, dim=0)
text_cond_tuple = (kv_compact, lens, cu_seqlens_k, Ltext)
return text_cond_tuple
def aug_with_positive_prompt(prompt):
for key in ['man', 'woman', 'men', 'women', 'boy', 'girl', 'child', 'person', 'human', 'adult', 'teenager', 'employee',
'employer', 'worker', 'mother', 'father', 'sister', 'brother', 'grandmother', 'grandfather', 'son', 'daughter']:
if key in prompt:
prompt = prompt + '. very smooth faces, good looking faces, face to the camera, perfect facial features'
break
return prompt
def enhance_image(image):
for t in range(1):
contrast_image = image.copy()
contrast_enhancer = ImageEnhance.Contrast(contrast_image)
contrast_image = contrast_enhancer.enhance(1.05) # 增强对比度
color_image = contrast_image.copy()
color_enhancer = ImageEnhance.Color(color_image)
color_image = color_enhancer.enhance(1.05) # 增强饱和度
return color_image
def get_image_prefix(input_raw_features, vae, scale_schedule, apply_spatial_patchify=False):
with torch.amp.autocast('cuda', enabled = False):
if apply_spatial_patchify:
vae_scale_schedule = [(pt, 2*ph, 2*pw) for pt, ph, pw in scale_schedule]
else:
vae_scale_schedule = scale_schedule
B = input_raw_features.shape[0]
if input_raw_features.dim() == 4:
codes_out = input_raw_features.unsqueeze(2)
else:
codes_out = input_raw_features
cum_var_input = 0
gt_all_bit_indices = []
residual = F.interpolate(codes_out, size=vae_scale_schedule[-1], mode=vae.quantizer.z_interplote_down).contiguous()
if apply_spatial_patchify:
residual = torch.nn.functional.pixel_unshuffle(residual.squeeze(-3), 2)
x_BLC_wo_prefix = residual.reshape(*residual.shape[:2], -1).permute(0,2,1)
return x_BLC_wo_prefix
def gen_one_img(
infinity_test,
vae,
text_tokenizer,
text_encoder,
prompt,
src_img_3HW,
cfg_list=[],
tau_list=[],
negative_prompt='',
scale_schedule=None,
top_k=900,
top_p=0.97,
cfg_sc=3,
cfg_exp_k=0.0,
cfg_insertion_layer=-5,
vae_type=0,
gumbel=0,
softmax_merge_topk=-1,
gt_leak=-1,
gt_ls_Bl=None,
g_seed=None,
sampling_per_bits=1,
enable_positive_prompt=0,
apply_spatial_patchify=False,
):
sstt = time.time()
if not isinstance(cfg_list, list):
cfg_list = [cfg_list] * len(scale_schedule)
if not isinstance(tau_list, list):
tau_list = [tau_list] * len(scale_schedule)
text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt, enable_positive_prompt)
if negative_prompt:
negative_label_B_or_BLT = encode_prompt(text_tokenizer, text_encoder, negative_prompt)
else:
negative_label_B_or_BLT = None
src_img_3HW = src_img_3HW.unsqueeze(0).to('cuda', non_blocking=True)
src_img_features, _, _ = vae.encode_for_raw_features(src_img_3HW, scale_schedule=scale_schedule)
print(f'cfg: {cfg_list}, tau: {tau_list}')
src_img_prefix = get_image_prefix(src_img_features, vae, scale_schedule, apply_spatial_patchify)
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True):
stt = time.time()
_, pred_gt, img_list = infinity_test.autoregressive_infer_cfg(
vae=vae,
scale_schedule=scale_schedule,
src_img_prefix=src_img_prefix,
label_B_or_BLT=text_cond_tuple, g_seed=g_seed,
B=1, negative_label_B_or_BLT=negative_label_B_or_BLT, force_gt_Bhw=None,
cfg_sc=cfg_sc, cfg_list=cfg_list, tau_list=tau_list, top_k=top_k, top_p=top_p,
returns_vemb=1, ratio_Bl1=None, gumbel=gumbel, norm_cfg=False,
cfg_exp_k=cfg_exp_k, cfg_insertion_layer=cfg_insertion_layer,
vae_type=vae_type, softmax_merge_topk=softmax_merge_topk,
ret_img=True, trunk_scale=1000,
gt_leak=gt_leak, gt_ls_Bl=gt_ls_Bl, inference_mode=True,
sampling_per_bits=sampling_per_bits,
)
print(f"cost: {time.time() - sstt}, infinity cost={time.time() - stt}")
img = img_list[0]
return img
def get_prompt_id(prompt):
md5 = hashlib.md5()
md5.update(prompt.encode('utf-8'))
prompt_id = md5.hexdigest()
return prompt_id
def save_slim_model(infinity_model_path, save_file=None, device='cpu', key='gpt_fsdp'):
print('[Save slim model]')
full_ckpt = torch.load(infinity_model_path, map_location=device)
infinity_slim = full_ckpt['trainer'][key]
# ema_state_dict = cpu_d['trainer'].get('gpt_ema_fsdp', state_dict)
if not save_file:
save_file = osp.splitext(infinity_model_path)[0] + '-slim.pth'
print(f'Save to {save_file}')
torch.save(infinity_slim, save_file)
print('[Save slim model] done')
return save_file
def load_tokenizer(t5_path =''):
print(f'[Loading tokenizer and text encoder]')
text_tokenizer: T5TokenizerFast = AutoTokenizer.from_pretrained(t5_path, revision=None, legacy=True)
text_tokenizer.model_max_length = 512
text_encoder: T5EncoderModel = T5EncoderModel.from_pretrained(t5_path, torch_dtype=torch.float16)
text_encoder.to('cuda')
text_encoder.eval()
text_encoder.requires_grad_(False)
return text_tokenizer, text_encoder
def load_infinity(
rope2d_each_sa_layer,
rope2d_normalized_by_hw,
use_scale_schedule_embedding,
pn,
use_bit_label,
add_lvl_embeding_only_first_block,
model_path='',
scale_schedule=None,
vae=None,
device='cuda',
model_kwargs=None,
text_channels=2048,
apply_spatial_patchify=0,
use_flex_attn=False,
bf16=False,
checkpoint_type='torch',
):
print(f'[Loading Infinity]')
text_maxlen = 512
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True), torch.no_grad():
infinity_test: Infinity = Infinity(
vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen,
shared_aln=True, raw_scale_schedule=scale_schedule,
checkpointing='full-block',
customized_flash_attn=False,
fused_norm=True,
pad_to_multiplier=128,
use_flex_attn=use_flex_attn,
add_lvl_embeding_only_first_block=add_lvl_embeding_only_first_block,
use_bit_label=use_bit_label,
rope2d_each_sa_layer=rope2d_each_sa_layer,
rope2d_normalized_by_hw=rope2d_normalized_by_hw,
pn=pn,
apply_spatial_patchify=apply_spatial_patchify,
inference_mode=True,
train_h_div_w_list=[1.0],
**model_kwargs,
).to(device=device)
print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}')
if bf16:
for block in infinity_test.unregistered_blocks:
block.bfloat16()
infinity_test.eval()
infinity_test.requires_grad_(False)
infinity_test.cuda()
torch.cuda.empty_cache()
print(f'[Load Infinity weights]')
if checkpoint_type == 'torch':
state_dict = torch.load(model_path, map_location=device)
print(infinity_test.load_state_dict(state_dict))
elif checkpoint_type == 'torch_shard':
from transformers.modeling_utils import load_sharded_checkpoint
load_sharded_checkpoint(infinity_test, model_path, strict=False)
infinity_test.rng = torch.Generator()
return infinity_test
def transform(pil_img, tgt_h, tgt_w):
width, height = pil_img.size
if width / height <= tgt_w / tgt_h:
resized_width = tgt_w
resized_height = int(tgt_w / (width / height))
else:
resized_height = tgt_h
resized_width = int((width / height) * tgt_h)
pil_img = pil_img.resize((resized_width, resized_height), resample=PImage.LANCZOS)
# crop the center out
arr = np.array(pil_img)
crop_y = (arr.shape[0] - tgt_h) // 2
crop_x = (arr.shape[1] - tgt_w) // 2
im = to_tensor(arr[crop_y: crop_y + tgt_h, crop_x: crop_x + tgt_w])
return im.add(im).add_(-1)
def joint_vi_vae_encode_decode(vae, image_path, scale_schedule, device, tgt_h, tgt_w):
pil_image = Image.open(image_path).convert('RGB')
inp = transform(pil_image, tgt_h, tgt_w)
inp = inp.unsqueeze(0).to(device)
scale_schedule = [(item[0], item[1], item[2]) for item in scale_schedule]
t1 = time.time()
h, z, _, all_bit_indices, _, infinity_input = vae.encode(inp, scale_schedule=scale_schedule)
t2 = time.time()
recons_img = vae.decode(z)[0]
if len(recons_img.shape) == 4:
recons_img = recons_img.squeeze(1)
print(f'recons: z.shape: {z.shape}, recons_img shape: {recons_img.shape}')
t3 = time.time()
print(f'vae encode takes {t2-t1:.2f}s, decode takes {t3-t2:.2f}s')
recons_img = (recons_img + 1) / 2
recons_img = recons_img.permute(1, 2, 0).mul_(255).cpu().numpy().astype(np.uint8)
gt_img = (inp[0] + 1) / 2
gt_img = gt_img.permute(1, 2, 0).mul_(255).cpu().numpy().astype(np.uint8)
print(recons_img.shape, gt_img.shape)
return gt_img, recons_img, all_bit_indices
def load_visual_tokenizer(args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# load vae
if args.vae_type in [14,16,18,20,24,32,64]:
from infinity.models.bsq_vae.vae import vae_model
schedule_mode = "dynamic"
codebook_dim = args.vae_type
codebook_size = 2**codebook_dim
if args.apply_spatial_patchify:
patch_size = 8
encoder_ch_mult=[1, 2, 4, 4]
decoder_ch_mult=[1, 2, 4, 4]
else:
patch_size = 16
encoder_ch_mult=[1, 2, 4, 4, 4]
decoder_ch_mult=[1, 2, 4, 4, 4]
vae = vae_model(args.vae_path, schedule_mode, codebook_dim, codebook_size, patch_size=patch_size,
encoder_ch_mult=encoder_ch_mult, decoder_ch_mult=decoder_ch_mult, test_mode=True).to(device)
else:
raise ValueError(f'vae_type={args.vae_type} not supported')
return vae
def load_transformer(vae, args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_path = args.model_path
if args.checkpoint_type == 'torch':
# copy large model to local; save slim to local; and copy slim to nas; load local slim model
if osp.exists(args.cache_dir):
local_model_path = osp.join(args.cache_dir, 'tmp', model_path.replace('/', '_'))
else:
local_model_path = model_path
if args.enable_model_cache:
slim_model_path = model_path.replace('ar-', 'slim-')
local_slim_model_path = local_model_path.replace('ar-', 'slim-')
os.makedirs(osp.dirname(local_slim_model_path), exist_ok=True)
print(f'model_path: {model_path}, slim_model_path: {slim_model_path}')
print(f'local_model_path: {local_model_path}, local_slim_model_path: {local_slim_model_path}')
if not osp.exists(local_slim_model_path):
if osp.exists(slim_model_path):
print(f'copy {slim_model_path} to {local_slim_model_path}')
shutil.copyfile(slim_model_path, local_slim_model_path)
else:
if not osp.exists(local_model_path):
print(f'copy {model_path} to {local_model_path}')
shutil.copyfile(model_path, local_model_path)
save_slim_model(local_model_path, save_file=local_slim_model_path, device=device)
print(f'copy {local_slim_model_path} to {slim_model_path}')
if not osp.exists(slim_model_path):
shutil.copyfile(local_slim_model_path, slim_model_path)
os.remove(local_model_path)
os.remove(model_path)
slim_model_path = local_slim_model_path
else:
slim_model_path = model_path
print(f'load checkpoint from {slim_model_path}')
elif args.checkpoint_type == 'torch_shard':
slim_model_path = model_path
if args.model_type == 'infinity_2b':
kwargs_model = dict(depth=32, embed_dim=2048, num_heads=2048//128, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8) # 2b model
elif args.model_type == 'infinity_8b':
kwargs_model = dict(depth=40, embed_dim=3584, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8)
elif args.model_type == 'infinity_layer12':
kwargs_model = dict(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer16':
kwargs_model = dict(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer24':
kwargs_model = dict(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer32':
kwargs_model = dict(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer40':
kwargs_model = dict(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
elif args.model_type == 'infinity_layer48':
kwargs_model = dict(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4)
infinity = load_infinity(
rope2d_each_sa_layer=args.rope2d_each_sa_layer,
rope2d_normalized_by_hw=args.rope2d_normalized_by_hw,
use_scale_schedule_embedding=args.use_scale_schedule_embedding,
pn=args.pn,
use_bit_label=args.use_bit_label,
add_lvl_embeding_only_first_block=args.add_lvl_embeding_only_first_block,
model_path=slim_model_path,
scale_schedule=None,
vae=vae,
device=device,
model_kwargs=kwargs_model,
text_channels=args.text_channels,
apply_spatial_patchify=args.apply_spatial_patchify,
use_flex_attn=args.use_flex_attn,
bf16=args.bf16,
checkpoint_type=args.checkpoint_type,
)
return infinity
def add_common_arguments(parser):
parser.add_argument('--cfg', type=str, default='3')
parser.add_argument('--tau', type=float, default=1)
parser.add_argument('--pn', type=str, required=True, choices=['0.06M', '0.25M', '1M'])
parser.add_argument('--model_path', type=str, required=True)
parser.add_argument('--cfg_insertion_layer', type=int, default=0)
parser.add_argument('--vae_type', type=int, default=1)
parser.add_argument('--vae_path', type=str, default='')
parser.add_argument('--add_lvl_embeding_only_first_block', type=int, default=0, choices=[0,1])
parser.add_argument('--use_bit_label', type=int, default=1, choices=[0,1])
parser.add_argument('--model_type', type=str, default='infinity_2b')
parser.add_argument('--rope2d_each_sa_layer', type=int, default=1, choices=[0,1])
parser.add_argument('--rope2d_normalized_by_hw', type=int, default=2, choices=[0,1,2])
parser.add_argument('--use_scale_schedule_embedding', type=int, default=0, choices=[0,1])
parser.add_argument('--sampling_per_bits', type=int, default=1, choices=[1,2,4,8,16])
parser.add_argument('--text_encoder_ckpt', type=str, default='')
parser.add_argument('--text_channels', type=int, default=2048)
parser.add_argument('--apply_spatial_patchify', type=int, default=0, choices=[0,1])
parser.add_argument('--h_div_w_template', type=float, default=1.000)
parser.add_argument('--use_flex_attn', type=int, default=0, choices=[0,1])
parser.add_argument('--enable_positive_prompt', type=int, default=0, choices=[0,1])
parser.add_argument('--cache_dir', type=str, default='/dev/shm')
parser.add_argument('--enable_model_cache', type=int, default=0, choices=[0,1])
parser.add_argument('--checkpoint_type', type=str, default='torch')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--bf16', type=int, default=1, choices=[0,1])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
add_common_arguments(parser)
parser.add_argument('--prompt', type=str, default='a dog')
parser.add_argument('--src_image_path', type=str, default='./source.jpg')
parser.add_argument('--tgt_image_path', type=str, default='./target.jpg')
parser.add_argument('--save_file', type=str, default='./tmp.jpg')
args = parser.parse_args()
# parse cfg
args.cfg = list(map(float, args.cfg.split(',')))
if len(args.cfg) == 1:
args.cfg = args.cfg[0]
if args.pn == '0.06M':
h, w = 256, 256
elif args.pn == '0.25M':
h, w = 512, 512
elif args.pn == '1M':
h, w = 1024, 1024
from infinity.dataset.dataset_t2i_iterable import transform
with open(args.src_image_path, 'rb') as f:
src_img: PImage.Image = PImage.open(f)
src_img = src_img.convert('RGB')
src_img_3HW = transform(src_img, h, w)
# src_img = (src_img_3HW + 1) / 2
# src_img = src_img.permute(1, 2, 0).mul_(255).to(torch.uint8).flip(dims=(2,))
# cv2.imwrite("test.jpg", src_img.cpu().numpy())
# load text encoder
text_tokenizer, text_encoder = load_tokenizer(t5_path =args.text_encoder_ckpt)
# load vae
vae = load_visual_tokenizer(args)
# load infinity
infinity = load_transformer(vae, args)
scale_schedule = dynamic_resolution_h_w[args.h_div_w_template][args.pn]['scales']
scale_schedule = [ (1, h, w) for (_, h, w) in scale_schedule]
with autocast(dtype=torch.bfloat16):
with torch.no_grad():
generated_image = gen_one_img(
infinity,
vae,
text_tokenizer,
text_encoder,
args.prompt,
src_img_3HW,
g_seed=args.seed,
gt_leak=0,
gt_ls_Bl=None,
cfg_list=args.cfg,
tau_list=args.tau,
scale_schedule=scale_schedule,
cfg_insertion_layer=[args.cfg_insertion_layer],
vae_type=args.vae_type,
sampling_per_bits=args.sampling_per_bits,
enable_positive_prompt=args.enable_positive_prompt,
)
os.makedirs(osp.dirname(osp.abspath(args.save_file)), exist_ok=True)
cv2.imwrite(args.save_file, generated_image.cpu().numpy())
print(f'Save to {osp.abspath(args.save_file)}')
|