--- title: VAREdit-8B-512 emoji: 🚀 colorFrom: indigo colorTo: purple sdk: gradio sdk_version: 5.27.0 app_file: app.py pinned: false license: mit models: - HiDream-ai/VAREdit --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference # VAREdit ![VAREdit Demo](assets/demo.jpg) [VAREdit](https://github.com/HiDream-ai/VAREdit) is an advanced image editing model built on the [Infinity](https://huggingface.co/FoundationVision/infinity) models, designed for high-quality instruction-based image editing. ## 🌟 Key Features - **Strong Instruction Follow**: Follows instructions more accurately due to the autoregressive nature of the model. - **Efficient Inference**: Optimized for fast generation with less than 1 seconds for 8B model. - **Flexible Resolution**: Supports 512×512 and 1024×1024 image resolutions ![VAREdit Demo](assets/framework.jpg) ## 📊 Model Variants | Model Variant | Resolutions | HuggingFace Model | Time (H800) | VRAM (GB) | |------------------|--------------|----------------------------------------------------------------------------------|----------|-----------| | VAREdit-8B-512 | 512×512 | [VAREdit-8B-512](https://huggingface.co/HiDream-ai/VAREdit) | ~0.7s | 50.41 | | VAREdit-8B-1024 | 1024×1024 | [VAREdit-8B-1024](https://huggingface.co/HiDream-ai/VAREdit) | ~1.99s | 50.41 | ## 🚀 Quick Start ### Prerequisites Before starting, ensure you have: - Python 3.8+ - CUDA-compatible GPU with sufficient VRAM (8GB+ for 2B model, 24GB+ for 8B model) - Required dependencies installed ### Installation 1. **Clone the repository** ```bash git clone https://github.com/HiDream-ai/VAREdit.git cd VAREdit ``` 2. **Install dependencies** ```bash pip install -r requirements.txt ``` 3. **Download model checkpoints** Download the VAREdit model checkpoints: ```bash # Download from HuggingFace git lfs install git clone https://huggingface.co/HiDream-ai/VAREdit ``` ### Basic Usage ```python from infer import load_model, generate_image model_components = load_model( pretrain_root="HiDream-ai/VAREdit", model_path="HiDream-ai/VAREdit/8B-1024.pth", model_size="8B", image_size=1024 ) # Generate edited image edited_image = generate_image( model_components, src_img_path="assets/test.jpg", instruction="Add glasses to this girl and change hair color to red", cfg=3.0, # Classifier-free guidance scale tau=0.1, # Temperature parameter seed=42 # Optional random seed ) ``` ## 📝 Detailed Configuration ### Model Sampling Parameters | Parameter | Description | Default | |-----------|-------------|---------| | `cfg` | Classifier-free guidance scale | 3.0 | | `tau` | Temperature for sampling | 1.0 | | `seed` | Random seed for reproducibility | -1 (random) | ## 📂 Project Structure ``` VAREdit/ ├── infer.py # Main inference script ├── infinity/ # Core model implementations │ ├── models/ # Model architectures │ ├── dataset/ # Data processing utilities │ └── utils/ # Helper functions ├── tools/ # Additional tools and scripts │ └── run_infinity.py # Model execution utilities ├── assets/ # Demo images and resources └── README.md # This file ``` ## 📊 Performance Benchmarks | **Method** | **Size** | **EMU-Edit Bal.** | **PIE-Bench Bal.** | **Time (A800)** | |:---|:---:|:---:|:---:|:---:| | InstructPix2Pix | 1.1B | 2.923 | 4.034 | 3.5s | | UltraEdit | 7.7B | 4.541 | 5.580 | 2.6s | | OmniGen | 3.8B | 4.674 | 3.492 | 16.5s | | AnySD | 2.9B | 3.129 | 3.326 | 3.4s | | EditAR | 0.8B | 3.305 | 4.707 | 45.5s | | ACE++ | 16.9B | 2.076 | 2.574 | 5.7s | | ICEdit | 17.0B | 4.785 | 4.933 | 8.4s | | **VAREdit** (256px) | 2.2B | 5.565 | 6.684 | 0.5s | | **VAREdit** (512px) | 2.2B | 5.662 | 6.996 | 0.7s | | **VAREdit** (512px) | 8.4B | 7.7923 | 8.1055 | 1.2s | | **VAREdit** (1024px) | 8.4B | 7.3797 | 7.6880 | 3.9s | **Note**: The released 8B models are trained longer and on more data, so the performances are better than that in the paper. ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 📚 Citation If you use VAREdit in your research, please cite: ```bibtex @article{varedit2025, title={Visual Autoregressive Modeling for Instruction-Guided Image Editing}, author={Mao, Qingyang and Cai, Qi and Li, Yehao and Pan, Yingwei and Cheng, Mingyue and Yao, Ting and Liu, Qi and Mei, Tao}, journal={arXiv preprint}, year={2025} } ``` ## 🙏 Acknowledgments - Built on the [Infinity](https://huggingface.co/FoundationVision/infinity) models **Note**: This project is under active development. Features and code may change.