HienK64BKHN commited on
Commit
291de1d
·
verified ·
1 Parent(s): 1b7fc9c

Upload 9 files

Browse files
.gitattributes CHANGED
@@ -1,35 +1 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63fb57aadb1617dffc3ddcf292e2b1a01ff32e9ca31e54af3aac63ffe066d8be
3
+ size 31313869
__pycache__/model.cpython-311.pyc ADDED
Binary file (1.7 kB). View file
 
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ### 1. Imports and class names setup ###
3
+ import gradio as gr
4
+ import os
5
+ import torch
6
+
7
+ from model import create_effnetb2_model
8
+ from timeit import default_timer as timer
9
+ from typing import Tuple, Dict
10
+
11
+ # Setup class names
12
+ class_names = ["pizza", "steak", "sushi"]
13
+
14
+ ### 2. Model and transforms preparation ###
15
+
16
+ # Create EffNetB2 model
17
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
18
+ num_classes=3, # len(class_names) would also work
19
+ )
20
+
21
+ os.chdir(r"C:\\Users\\bogdz\\OneDrive\\Máy tính\\LearnPytorch\\09_Model_Deploying\\demos\\foodvision_mini")
22
+
23
+ # Load saved weights
24
+ effnetb2.load_state_dict(
25
+ torch.load(
26
+ f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
27
+ map_location=torch.device("cpu"), # load to CPU
28
+ )
29
+ )
30
+
31
+ ### 3. Predict function ###
32
+
33
+ # Create predict function
34
+ def predict(img) -> Tuple[Dict, float]:
35
+ """Transforms and performs a prediction on img and returns prediction and time taken.
36
+ """
37
+ # Start the timer
38
+ start_time = timer()
39
+
40
+ # Transform the target image and add a batch dimension
41
+ img = effnetb2_transforms(img).unsqueeze(0)
42
+
43
+ # Put model into evaluation mode and turn on inference mode
44
+ effnetb2.eval()
45
+ with torch.inference_mode():
46
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
47
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
48
+
49
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
50
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
51
+
52
+ # Calculate the prediction time
53
+ pred_time = round(timer() - start_time, 5)
54
+
55
+ # Return the prediction dictionary and prediction time
56
+ return pred_labels_and_probs, pred_time
57
+
58
+ ### 4. Gradio app ###
59
+
60
+ # Create title, description and article strings
61
+ title = "FoodVision Mini 🍕🥩🍣"
62
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
63
+ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
64
+
65
+ # Create examples list from "examples/" directory
66
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
67
+
68
+ # Create the Gradio demo
69
+ demo = gr.Interface(fn=predict, # mapping function from input to output
70
+ inputs=gr.Image(type="pil"), # what are the inputs?
71
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
72
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
73
+ # Create examples list from "examples/" directory
74
+ examples=example_list,
75
+ title=title,
76
+ description=description,
77
+ article=article)
78
+
79
+ # Launch the demo!
80
+ demo.launch(debug = False,
81
+ share = True)
examples/1844723.jpg ADDED
examples/39461.jpg ADDED
examples/61656.jpg ADDED
model.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torchvision
4
+ from torch import nn
5
+
6
+ def create_effnetb2_model(num_classes: int = 3,
7
+ seeds: int = 42):
8
+ """Creates an EfficientNetB2 feature extractor model and transforms.
9
+
10
+ Args:
11
+ num_classes (int, optional): number of classes in the classifier head.
12
+ Defaults to 3.
13
+ seed (int, optional): random seed value. Defaults to 42.
14
+
15
+ Returns:
16
+ model (torch.nn.Module): EffNetB2 feature extractor model.
17
+ transforms (torchvision.transforms): EffNetB2 image transforms.
18
+ """
19
+
20
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
21
+ transforms = weights.transforms()
22
+
23
+ model = torchvision.models.efficientnet_b2(weights=weights)
24
+
25
+ for params in model.parameters():
26
+ params.requires_grad = False
27
+
28
+ model.classifier = nn.Sequential(
29
+ nn.Dropout(p=0.3, inplace=True),
30
+ nn.Linear(in_features=1408, out_features=num_classes),
31
+ )
32
+
33
+ return model, transforms
34
+
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==3.1.4