Spaces:
Runtime error
Runtime error
Commit
·
1def0a4
1
Parent(s):
6b89aad
Refactor
Browse files- requirements.txt +1 -0
- run_opencv.py +106 -92
requirements.txt
CHANGED
|
@@ -6,3 +6,4 @@ black
|
|
| 6 |
opencv-python
|
| 7 |
opencv-python-headless
|
| 8 |
streamlit-webrtc
|
|
|
|
|
|
| 6 |
opencv-python
|
| 7 |
opencv-python-headless
|
| 8 |
streamlit-webrtc
|
| 9 |
+
typed-argument-parser
|
run_opencv.py
CHANGED
|
@@ -1,134 +1,148 @@
|
|
| 1 |
-
from typing import List, Tuple
|
| 2 |
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
import torch
|
|
|
|
| 7 |
from torch import Tensor
|
| 8 |
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
| 9 |
|
| 10 |
from utils.img_container import ImgContainer
|
| 11 |
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
| 23 |
|
| 24 |
-
def inference():
|
| 25 |
-
if not img_container.ready:
|
| 26 |
-
return
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
logits: Tensor = outputs.logits
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
img_container
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
# logits = np.squeeze(logits)
|
| 42 |
-
logits = logits.squeeze().numpy()
|
| 43 |
-
indices = np.argsort(logits)[::-1][:TOP_K]
|
| 44 |
-
values = logits[indices]
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# print(f"Label: {predicted_label} - {value:.2f}%")
|
| 50 |
-
results.append((predicted_label, value))
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
else:
|
| 61 |
-
return 96
|
| 62 |
|
|
|
|
| 63 |
|
| 64 |
-
model_name
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# "fcakyon/timesformer-large-finetuned-k400",
|
| 72 |
-
# "fcakyon/timesformer-large-finetuned-k600",
|
| 73 |
-
feature_extractor, model = load_model(model_name)
|
| 74 |
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
size = (frame_width, frame_height)
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
print("Error reading video file")
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
# by frame
|
| 102 |
-
ret, frame = camera.read()
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
# inference()
|
| 112 |
-
rs = img_container.frame_rate.show_fps(frame, img_container.is_recording)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
# the
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
| 124 |
|
| 125 |
-
if k == ord("q"):
|
| 126 |
-
break
|
| 127 |
-
elif k == ord("r"):
|
| 128 |
-
img_container.toggle_recording()
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
# Destroy all the windows
|
| 134 |
-
cv2.destroyAllWindows()
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple
|
| 2 |
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
import torch
|
| 7 |
+
from tap import Tap
|
| 8 |
from torch import Tensor
|
| 9 |
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
| 10 |
|
| 11 |
from utils.img_container import ImgContainer
|
| 12 |
|
| 13 |
|
| 14 |
+
class ArgParser(Tap):
|
| 15 |
+
is_recording: Optional[bool] = False
|
| 16 |
+
|
| 17 |
+
# "facebook/timesformer-base-finetuned-k400"
|
| 18 |
+
# "facebook/timesformer-base-finetuned-k600",
|
| 19 |
+
# "facebook/timesformer-base-finetuned-ssv2",
|
| 20 |
+
# "facebook/timesformer-hr-finetuned-k600",
|
| 21 |
+
# "facebook/timesformer-hr-finetuned-k400",
|
| 22 |
+
# "facebook/timesformer-hr-finetuned-ssv2",
|
| 23 |
+
# "fcakyon/timesformer-large-finetuned-k400",
|
| 24 |
+
# "fcakyon/timesformer-large-finetuned-k600",
|
| 25 |
+
model_name: Optional[str] = "facebook/timesformer-base-finetuned-k400"
|
| 26 |
|
| 27 |
+
num_skip_frames: Optional[int] = 4
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
class ActivityModel:
|
| 31 |
+
def __init__(self, args: ArgParser):
|
| 32 |
+
self.feature_extractor, self.model = self.load_model(args.model_name)
|
| 33 |
|
| 34 |
+
self.frames_per_video = self.get_frames_per_video(args.model_name)
|
| 35 |
+
print(f"Frames per video: {self.frames_per_video}")
|
|
|
|
| 36 |
|
| 37 |
+
def load_model(self, model_name: str):
|
| 38 |
+
if "base-finetuned-k400" in model_name or "base-finetuned-k600" in model_name:
|
| 39 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
| 40 |
+
"MCG-NJU/videomae-base-finetuned-kinetics"
|
| 41 |
+
)
|
| 42 |
+
else:
|
| 43 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 44 |
+
model = TimesformerForVideoClassification.from_pretrained(model_name)
|
| 45 |
+
return feature_extractor, model
|
| 46 |
|
| 47 |
+
def inference(self, img_container: ImgContainer):
|
| 48 |
+
if not img_container.ready:
|
| 49 |
+
return
|
| 50 |
|
| 51 |
+
inputs = self.feature_extractor(list(img_container.imgs), return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = self.model(**inputs)
|
| 55 |
+
logits: Tensor = outputs.logits
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# model predicts one of the 400 Kinetics-400 classes
|
| 58 |
+
max_index = logits.argmax(-1).item()
|
| 59 |
+
predicted_label = self.model.config.id2label[max_index]
|
| 60 |
+
|
| 61 |
+
img_container.frame_rate.label = (
|
| 62 |
+
f"{predicted_label}_{logits[0][max_index]:.2f}%"
|
| 63 |
+
)
|
| 64 |
|
| 65 |
+
TOP_K = 12
|
| 66 |
+
# logits = np.squeeze(logits)
|
| 67 |
+
logits = logits.squeeze().numpy()
|
| 68 |
+
indices = np.argsort(logits)[::-1][:TOP_K]
|
| 69 |
+
values = logits[indices]
|
| 70 |
|
| 71 |
+
results: List[Tuple[str, float]] = []
|
| 72 |
+
for index, value in zip(indices, values):
|
| 73 |
+
predicted_label = self.model.config.id2label[index]
|
| 74 |
+
# print(f"Label: {predicted_label} - {value:.2f}%")
|
| 75 |
+
results.append((predicted_label, value))
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
img_container.rs = pd.DataFrame(results, columns=("Label", "Confidence"))
|
| 78 |
|
| 79 |
+
def get_frames_per_video(self, model_name: str) -> int:
|
| 80 |
+
if "base-finetuned" in model_name:
|
| 81 |
+
return 8
|
| 82 |
+
elif "hr-finetuned" in model_name:
|
| 83 |
+
return 16
|
| 84 |
+
else:
|
| 85 |
+
return 96
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
|
| 88 |
+
def main(args: ArgParser):
|
| 89 |
+
activity_model = ActivityModel(args)
|
| 90 |
+
img_container = ImgContainer(activity_model.frames_per_video)
|
| 91 |
|
| 92 |
+
num_skips = 0
|
| 93 |
|
| 94 |
+
# define a video capture object
|
| 95 |
+
camera = cv2.VideoCapture(0)
|
| 96 |
|
| 97 |
+
frame_width = int(camera.get(3))
|
| 98 |
+
frame_height = int(camera.get(4))
|
| 99 |
+
size = (frame_width, frame_height)
|
| 100 |
|
| 101 |
+
video_output = cv2.VideoWriter(
|
| 102 |
+
"activities.mp4", cv2.VideoWriter_fourcc(*"MP4V"), 10, size
|
| 103 |
+
)
|
| 104 |
|
| 105 |
+
if camera.isOpened() == False:
|
| 106 |
+
print("Error reading video file")
|
|
|
|
| 107 |
|
| 108 |
+
while camera.isOpened():
|
| 109 |
+
# Capture the video frame
|
| 110 |
+
# by frame
|
| 111 |
+
ret, frame = camera.read()
|
| 112 |
|
| 113 |
+
num_skips = (num_skips + 1) % args.num_skip_frames
|
|
|
|
| 114 |
|
| 115 |
+
img_container.img = frame
|
| 116 |
+
img_container.frame_rate.count()
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
if num_skips == 0:
|
| 119 |
+
img_container.add_frame(frame)
|
| 120 |
+
activity_model.inference(img_container)
|
| 121 |
+
rs = img_container.frame_rate.show_fps(frame, img_container.is_recording)
|
| 122 |
|
| 123 |
+
# Display the resulting frame
|
| 124 |
+
cv2.imshow("ActivityTracking", rs)
|
| 125 |
|
| 126 |
+
if img_container.is_recording:
|
| 127 |
+
video_output.write(rs)
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
# the 'q' button is set as the
|
| 130 |
+
# quitting button you may use any
|
| 131 |
+
# desired button of your choice
|
| 132 |
+
k = cv2.waitKey(1)
|
| 133 |
|
| 134 |
+
if k == ord("q"):
|
| 135 |
+
break
|
| 136 |
+
elif k == ord("r"):
|
| 137 |
+
img_container.toggle_recording()
|
| 138 |
|
| 139 |
+
# After the loop release the cap object
|
| 140 |
+
camera.release()
|
| 141 |
+
video_output.release()
|
| 142 |
+
# Destroy all the windows
|
| 143 |
+
cv2.destroyAllWindows()
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
if __name__ == "__main__":
|
| 147 |
+
args = ArgParser().parse_args()
|
| 148 |
+
main(args)
|
|
|
|
|
|