Spaces:
Running
on
Zero
Running
on
Zero
Himanshu-AT
commited on
Commit
·
ab4297c
1
Parent(s):
2143895
add width and height
Browse files
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -39,45 +39,45 @@ for model_name, model_path in lora_models.items():
|
|
39 |
|
40 |
lora_models["None"] = None
|
41 |
|
42 |
-
def calculate_optimal_dimensions(image: Image.Image):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
@spaces.GPU(durations=300)
|
80 |
-
def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
81 |
# pipe.enable_xformers_memory_efficient_attention()
|
82 |
gr.Info("Infering")
|
83 |
|
@@ -95,7 +95,7 @@ def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=Fal
|
|
95 |
return None, None
|
96 |
|
97 |
|
98 |
-
width, height = calculate_optimal_dimensions(image)
|
99 |
if randomize_seed:
|
100 |
seed = random.randint(0, MAX_SEED)
|
101 |
|
@@ -261,26 +261,28 @@ with gr.Blocks(css=css) as demo:
|
|
261 |
value=0.85,
|
262 |
)
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
279 |
|
280 |
gr.on(
|
281 |
triggers=[run_button.click, prompt.submit],
|
282 |
fn = infer,
|
283 |
-
inputs = [edit_image, prompt, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps],
|
284 |
outputs = [result, seed]
|
285 |
)
|
286 |
|
@@ -324,4 +326,4 @@ def authenticate(username, password):
|
|
324 |
return False
|
325 |
# Launch the app with authentication
|
326 |
|
327 |
-
demo.launch(debug=True, auth=authenticate)
|
|
|
39 |
|
40 |
lora_models["None"] = None
|
41 |
|
42 |
+
# def calculate_optimal_dimensions(image: Image.Image):
|
43 |
+
# # Extract the original dimensions
|
44 |
+
# original_width, original_height = image.size
|
45 |
+
|
46 |
+
# # Set constants
|
47 |
+
# MIN_ASPECT_RATIO = 9 / 16
|
48 |
+
# MAX_ASPECT_RATIO = 16 / 9
|
49 |
+
# FIXED_DIMENSION = 1024
|
50 |
+
|
51 |
+
# # Calculate the aspect ratio of the original image
|
52 |
+
# original_aspect_ratio = original_width / original_height
|
53 |
+
|
54 |
+
# # Determine which dimension to fix
|
55 |
+
# if original_aspect_ratio > 1: # Wider than tall
|
56 |
+
# width = FIXED_DIMENSION
|
57 |
+
# height = round(FIXED_DIMENSION / original_aspect_ratio)
|
58 |
+
# else: # Taller than wide
|
59 |
+
# height = FIXED_DIMENSION
|
60 |
+
# width = round(FIXED_DIMENSION * original_aspect_ratio)
|
61 |
+
|
62 |
+
# # Ensure dimensions are multiples of 8
|
63 |
+
# width = (width // 8) * 8
|
64 |
+
# height = (height // 8) * 8
|
65 |
+
|
66 |
+
# # Enforce aspect ratio limits
|
67 |
+
# calculated_aspect_ratio = width / height
|
68 |
+
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
69 |
+
# width = (height * MAX_ASPECT_RATIO // 8) * 8
|
70 |
+
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
71 |
+
# height = (width / MIN_ASPECT_RATIO // 8) * 8
|
72 |
+
|
73 |
+
# # Ensure width and height remain above the minimum dimensions
|
74 |
+
# width = max(width, 576) if width == FIXED_DIMENSION else width
|
75 |
+
# height = max(height, 576) if height == FIXED_DIMENSION else height
|
76 |
+
|
77 |
+
# return width, height
|
78 |
|
79 |
@spaces.GPU(durations=300)
|
80 |
+
def infer(edit_images, prompt, width, height, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
81 |
# pipe.enable_xformers_memory_efficient_attention()
|
82 |
gr.Info("Infering")
|
83 |
|
|
|
95 |
return None, None
|
96 |
|
97 |
|
98 |
+
# width, height = calculate_optimal_dimensions(image)
|
99 |
if randomize_seed:
|
100 |
seed = random.randint(0, MAX_SEED)
|
101 |
|
|
|
261 |
value=0.85,
|
262 |
)
|
263 |
|
264 |
+
with gr.Row():
|
265 |
+
|
266 |
+
width = gr.Slider(
|
267 |
+
label="width",
|
268 |
+
minimum=512,
|
269 |
+
maximum=3072,
|
270 |
+
step=1,
|
271 |
+
value=1024,
|
272 |
+
)
|
273 |
+
|
274 |
+
height = gr.Slider(
|
275 |
+
label="height",
|
276 |
+
minimum=512,
|
277 |
+
maximum=3072,
|
278 |
+
step=1,
|
279 |
+
value=1024,
|
280 |
+
)
|
281 |
|
282 |
gr.on(
|
283 |
triggers=[run_button.click, prompt.submit],
|
284 |
fn = infer,
|
285 |
+
inputs = [edit_image, prompt, width, height, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps],
|
286 |
outputs = [result, seed]
|
287 |
)
|
288 |
|
|
|
326 |
return False
|
327 |
# Launch the app with authentication
|
328 |
|
329 |
+
demo.launch(debug=True, auth=authenticate)
|