|
import pandas as pd
|
|
import numpy as np
|
|
from dotenv import load_dotenv
|
|
|
|
from langchain_community.document_loaders import TextLoader
|
|
from langchain_openai import OpenAIEmbeddings
|
|
from langchain_text_splitters import CharacterTextSplitter
|
|
from langchain_chroma import Chroma
|
|
|
|
import gradio as gr
|
|
|
|
load_dotenv()
|
|
|
|
books = pd.read_csv("books_with_emotions.csv")
|
|
books["large_thumbnail"] = books["thumbnail"] + "&fife=w800"
|
|
books["large_thumbnail"] = np.where(
|
|
books["large_thumbnail"].isna(),
|
|
"cover-not-found.jpg",
|
|
books["large_thumbnail"],
|
|
)
|
|
|
|
raw_documents = TextLoader("tagged_descriptions.txt", encoding='utf-8').load()
|
|
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=0, chunk_overlap=0)
|
|
documents = text_splitter.split_documents(raw_documents)
|
|
db_books = Chroma.from_documents(documents, OpenAIEmbeddings())
|
|
|
|
|
|
def retrieve_semantic_recommendations(
|
|
query: str,
|
|
category: str = None,
|
|
tone: str = None,
|
|
initial_top_k: int = 50,
|
|
final_top_k: int = 16,
|
|
) -> pd.DataFrame:
|
|
|
|
recs = db_books.similarity_search(query, k=initial_top_k)
|
|
books_list = [int(rec.page_content.strip('"').split()[0]) for rec in recs]
|
|
book_recs = books[books["isbn13"].isin(books_list)].head(initial_top_k)
|
|
|
|
if category != "All":
|
|
book_recs = book_recs[book_recs["simple_categories"] == category].head(final_top_k)
|
|
else:
|
|
book_recs = book_recs.head(final_top_k)
|
|
|
|
if tone == "Happy":
|
|
book_recs.sort_values(by="joy", ascending=False, inplace=True)
|
|
elif tone == "Surprising":
|
|
book_recs.sort_values(by="surprise", ascending=False, inplace=True)
|
|
elif tone == "Angry":
|
|
book_recs.sort_values(by="anger", ascending=False, inplace=True)
|
|
elif tone == "Suspenseful":
|
|
book_recs.sort_values(by="fear", ascending=False, inplace=True)
|
|
elif tone == "Sad":
|
|
book_recs.sort_values(by="sadness", ascending=False, inplace=True)
|
|
|
|
return book_recs
|
|
|
|
|
|
def recommend_books(
|
|
query: str,
|
|
category: str,
|
|
tone: str
|
|
):
|
|
recommendations = retrieve_semantic_recommendations(query, category, tone)
|
|
results = []
|
|
|
|
for _, row in recommendations.iterrows():
|
|
description = row["description"]
|
|
truncated_desc_split = description.split()
|
|
truncated_description = " ".join(truncated_desc_split[:30]) + "..."
|
|
|
|
authors_split = row["authors"].split(";")
|
|
if len(authors_split) == 2:
|
|
authors_str = f"{authors_split[0]} and {authors_split[1]}"
|
|
elif len(authors_split) > 2:
|
|
authors_str = f"{', '.join(authors_split[:-1])}, and {authors_split[-1]}"
|
|
else:
|
|
authors_str = row["authors"]
|
|
|
|
caption = f"{row['title']} by {authors_str}: {truncated_description}"
|
|
results.append((row["large_thumbnail"], caption))
|
|
return results
|
|
|
|
categories = ["All"] + sorted(books["simple_categories"].unique())
|
|
tones = ["All"] + ["Happy", "Surprising", "Angry", "Suspenseful", "Sad"]
|
|
|
|
with gr.Blocks(theme = gr.themes.Citrus()) as dashboard:
|
|
gr.Markdown("# Book Recommendation System")
|
|
|
|
with gr.Row():
|
|
user_query = gr.Textbox(label = "Please enter a description of a book:",
|
|
placeholder = "e.g., A story about forgiveness")
|
|
category_dropdown = gr.Dropdown(choices = categories, label = "Select a category:", value = "All")
|
|
tone_dropdown = gr.Dropdown(choices = tones, label = "Select an emotional tone:", value = "All")
|
|
submit_button = gr.Button("Find recommendations")
|
|
|
|
gr.Markdown("## Recommendations")
|
|
output = gr.Gallery(label = "Recommended books", columns = 8, rows = 2)
|
|
|
|
submit_button.click(fn = recommend_books,
|
|
inputs = [user_query, category_dropdown, tone_dropdown],
|
|
outputs = output)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
dashboard.launch(
|
|
server_name="0.0.0.0",
|
|
server_port=7860,
|
|
share=True,
|
|
inbrowser=True
|
|
) |