import ast
from collections import defaultdict
from functools import partial
import itertools
import os
import re
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from datetime import datetime

import gradio as gr
import pandas as pd
from datatrove.io import DataFolder

FALLBACK_TOKEN_NAME = "HF_TOKEN"

def is_arary_like(x):
    return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray)

def get_task_type(df):
    if all(isinstance(pred, str) for pred in df['predictions'].iloc[0]):
        return "generative"
    if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
        return "multiple_choice"
    return "mixed"

def fix_df(df):
    # For some reason some metrics and predictions are stored as strings
    for col in ["predictions", "metrics", "choices", "gold", "gold_index"]:
        if col in df.columns:
            df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values]
    return df

def get_run_name_seed(run_name):
    if "-seed-" not in run_name:
        return run_name, 5
    run_name, seed = run_name.split("-seed-")
    return run_name, int(seed)

def fetch_repo_structure(results_uri, oauth_token: gr.OAuthToken | None = None):
    token = os.environ.get(FALLBACK_TOKEN_NAME)
    if oauth_token:
        token = oauth_token.token

    data_folder = DataFolder(results_uri, token=token)
    runs = [f.removeprefix("details/") for f in data_folder.list_files("details", recursive=False, include_directories=True) if f != "details"]

    if not runs:
        return {}, gr.update(choices=[], value=None)

    def process_run(run):
        run_files = [f.removeprefix(f"details/{run}/") for f in data_folder.list_files(f"details/{run}", recursive=False, include_directories=True) if f != f"details/{run}"]
        return run, run_files

    with ThreadPoolExecutor() as executor:
        results = list(executor.map(process_run, runs))

    checkpoints_dict = dict(results)

    return checkpoints_dict, gr.update(choices=list(checkpoints_dict), value=None)

def update_checkpoints(selected_runs, checkpoints):
    if not selected_runs:
        return gr.update(choices=[], value=None)
    
    common_checkpoints = set(checkpoints[selected_runs[0]])
    for run in selected_runs[1:]:
        common_checkpoints.intersection_update(set(checkpoints[run]))
    
    common_checkpoints = sorted(list(common_checkpoints))
    
    return gr.update(choices=common_checkpoints, value=common_checkpoints[0] if common_checkpoints else None)


def select_runs_by_regex(runs, current_selected, regex_to_select):
    comp_re = re.compile(regex_to_select)
    return list(sorted(set((current_selected if current_selected else []) +
                           [run for run in runs if comp_re.fullmatch(run)])))

def select_runs_by_language(runs, current_selected, language):
    if language:
        return select_runs_by_regex(runs, current_selected, f".*-{language}-.*")
    return current_selected

def fetch_available_tasks(results_uri, runs_to_fetch, checkpoint) -> dict[str, dict[str, str]]:
    token = os.environ.get(FALLBACK_TOKEN_NAME)
    
    data_folder = DataFolder(results_uri, token=token)
    all_tasks = defaultdict(lambda: defaultdict(dict))
    
    for run in runs_to_fetch:
        try:
            files = data_folder.list_files(f"details/{run}/{checkpoint}", recursive=False)
            parquet_files = [f.split("/")[-1] for f in files if f.endswith('.parquet')]
            
            for full_filename in parquet_files:
                task_name, date_str = full_filename.replace('.parquet', '').rsplit('_', 1)
                date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f')
                
                if run not in all_tasks[task_name] or date > all_tasks[task_name][run]['date']:
                    all_tasks[task_name][run] = {'filename': full_filename, 'date': date}
        except FileNotFoundError:
            print(f"Checkpoint not found for run: {run}")
            
    print(all_tasks)
    
    available_tasks = {
        task: {run: info['filename'] for run, info in runs.items()}
        for task, runs in all_tasks.items()
        if set(runs.keys()) == set(runs_to_fetch)
    }
    
    return available_tasks

def fetch_run_results(results_uri, runs_to_fetch, checkpoint,
                      oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()):

    task_runs_dict = fetch_available_tasks(results_uri, runs_to_fetch, checkpoint)
    task_names = list(task_runs_dict.keys())
    return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict


def render_table(df, selected_runs, metric_names):
    if df is None or not selected_runs or not metric_names:
        return None, "0"
    kept_metrics = [f"metric_{metric_name}_{run_name}" for run_name in selected_runs for metric_name in metric_names]
    other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
    df = df.drop(columns=other_metrics)
    # widths = get_column_widths(df)
    df = shorten_column_names(df, selected_runs, metric_names)

    # Sample 100
    n_samples = len(df)
    df = df.sample(n=min(100, len(df)), random_state=42)
    return df, n_samples

def get_column_widths(df):
    column_widths = []
    for col in df.columns:
        if col == "full_prompt":
            column_widths.append("300px")
        elif col in ["choices", "gold"]:
            column_widths.append("250px")
        elif col.startswith("metric_"):
            column_widths.append("50px")
        else:
            column_widths.append("200px")  # Default width for other columns
    return column_widths


def shorten_column_names(df, run_names: list[str], metric_names: list[str]):
    """
    Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
    Turns generation_{run_name} into generation_i
    """
    # Handle metric columns
    # Aggregate columns to rename
    columns_to_rename = {}
    for idx, run_name in enumerate(run_names):
        for metric_name in metric_names:
            original_metric_column = f"metric_{metric_name}_{run_name}"
            if original_metric_column in df.columns:
                columns_to_rename[original_metric_column] = f"{metric_name}_{idx}"
        
        original_generation_column = f"generation_{run_name}"
        if original_generation_column in df.columns:
            columns_to_rename[original_generation_column] = f"generation_{idx}"
    
    # Rename columns in a single operation
    df = df.rename(columns=columns_to_rename)
    return df


def load_task_data(results_uri, runs_to_fetch, checkpoint, task_name, tasks_files, progress=gr.Progress()):
    token = os.environ.get(FALLBACK_TOKEN_NAME)
    if not runs_to_fetch or not task_name:
        return None, None, None
    

    print(runs_to_fetch)
    
    data_folder = DataFolder(f"filecache::{results_uri}", token=token, cache_storage="./results-cache")
    print(tasks_files)
    
    def fetch_run_file(run_to_fetch):
        file_path = f"details/{run_to_fetch}/{checkpoint}/{tasks_files[task_name][run_to_fetch]}"
        try:
            with data_folder.open(file_path, "rb") as f:
                df = pd.read_parquet(f)
            return df, run_to_fetch
        except FileNotFoundError:
            print(f"File not found: {tasks_files[task_name][run_to_fetch]}")
            return None, run_to_fetch

    with ThreadPoolExecutor() as pool:
        results = list(progress.tqdm(pool.map(fetch_run_file, runs_to_fetch), total=len(runs_to_fetch),
                                     desc="Fetching run data..."))
    
    dfs = [fix_df(df) for df, _ in results if df is not None]
    run_names = [run for _, run in results if run is not None]

    if not dfs:
        return None, None, gr.update(choices=[], value=None)
    
    task_type = get_task_type(dfs[0])
    def prepare_df(df, run_name, task_type):
        def get_choice_predictions(df, task_type):
            # For some evals it's string for other it's list
            predictions = df['predictions']
            if task_type == "generative":
                return predictions
            
            if task_type == "multiple_choice":
                n_choices = len(df['choices'])
                return [pred[0] for pred in predictions[:n_choices]]
            
            if task_type == "mixed":
                return predictions[0]
            
            return predictions
        
        generative_columns = {
            f"generation_{run_name}": df.apply(partial(get_choice_predictions, task_type=task_type), axis=1)
        } if task_type == "generative" or task_type == "mixed" else {}
        
        


        prepared_df = pd.DataFrame({
            'full_prompt': df['full_prompt'],
            **generative_columns,
        })
        # For some reason some metrics are stored as strings
        metrics = df['metrics']
        # Assume all metrics are the same
        for metric_key in metrics[0].keys():
            prepared_df[f'metric_{metric_key}_{run_name}'] = [metric[metric_key] for metric in metrics]
        return prepared_df.set_index('full_prompt')
    
    def get_gold_label(df, task_type):
        if task_type == "generative":
            return df['gold']
        return df['gold_index']

    # Prepare the first DataFrame with choices and gold
    combined_df = dfs[0][['full_prompt']].set_index('full_prompt')
    if task_type in ["multiple_choice", "mixed"]:
        combined_df["choices"] = dfs[0]["choices"].values

    combined_df['gold'] = dfs[0].apply(lambda row: get_gold_label(row, task_type), axis=1).values
    
    # Join all prepared DataFrames
    for df, run_name in zip(dfs, run_names):
        prepared_df = prepare_df(df, run_name, task_type)
        combined_df = combined_df.join(prepared_df, how='outer')
        

    available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in combined_df.columns if col.startswith("metric_")))
    combined_df = combined_df.reset_index()
    chosen_metrics = available_metrics[:1]

    return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)

with gr.Blocks() as demo:
    runs_checkpoints = gr.State({})
    results_df_full = gr.State(None)
    tasks_files = gr.State({})
    login_button = gr.LoginButton(visible=False)
    results_uri = gr.Textbox(label="Results URI", value="s3://fineweb-multilingual-v1/evals/test/", visible=True)
    with gr.Column():
        gr.Markdown("# FineWeb experiments results explorer")
        with gr.Row():
            with gr.Column():
                select_by_regex_text = gr.Textbox(label="Regex to select runs",
                                                  value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*")
                select_by_regex_button = gr.Button("Select matching runs")
            with gr.Column():
                select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"], 
                                                 interactive=True, label="Select by language", 
                                                 info="Choose a language to prefill the regex")
        selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
        checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint")
        fetch_res = gr.Button("Fetch results")
        task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
        metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric")
        results_df = gr.Dataframe(interactive=False, wrap=True)
        with gr.Row():
            with gr.Column():
                num_samples = gr.Text(interactive=False, label="# Samples")

    # Run selection
    gr.on(
        triggers=[results_uri.change],
        fn=fetch_repo_structure, inputs=[results_uri], outputs=[runs_checkpoints, selected_runs],
    )
    gr.on(
        triggers=[select_by_regex_button.click],
        fn=select_runs_by_regex,
        inputs=[runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs]
    )
    gr.on(
        triggers=[select_by_language.change],
        fn=select_runs_by_language,
        inputs=[runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs]
    )
    
    # Update checkpoints based on selected runs
    gr.on(
        triggers=[selected_runs.change],
        fn=update_checkpoints,
        inputs=[selected_runs, runs_checkpoints],
        outputs=[checkpoint]
    )
    
    # Fetch available tasks
    gr.on(
        triggers=[fetch_res.click],
        fn=fetch_run_results,
        inputs=[results_uri, selected_runs, checkpoint],
        outputs=[task_name, tasks_files]
    ).then(
        fn=load_task_data,
        inputs=[results_uri, selected_runs, checkpoint, task_name, tasks_files],
        outputs=[results_df_full, metric_names]
    ).then(
        fn=render_table,
        inputs=[results_df_full, selected_runs, metric_names],
        outputs=[results_df, num_samples]
    )

    # Update results when task name or metric changes
    gr.on(
        triggers=[task_name.input],
        fn=load_task_data,
        inputs=[results_uri, selected_runs, checkpoint, task_name, tasks_files],
        outputs=[results_df_full, metric_names]
    ).then(
        fn=render_table,
        inputs=[results_df_full, selected_runs, metric_names],
        outputs=[results_df, num_samples]
    )
    
    gr.on(
        triggers=[metric_names.input],
        fn=render_table,
        inputs=[results_df_full, selected_runs, metric_names],
        outputs=[results_df, num_samples]
    )
    
    demo.load(fn=fetch_repo_structure, inputs=[results_uri], outputs=[runs_checkpoints, selected_runs])

demo.launch()