Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,21 @@
|
|
1 |
-
import
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import scipy.io.wavfile
|
5 |
from transformers import VitsModel, AutoTokenizer
|
6 |
import re
|
7 |
|
8 |
-
|
|
|
|
|
9 |
model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
|
10 |
tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model.to(device)
|
13 |
model.eval()
|
14 |
|
|
|
15 |
number_words = {
|
16 |
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
|
17 |
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
|
@@ -75,23 +79,13 @@ def normalize_text(text):
|
|
75 |
text = text.replace("ZamZam", "SamSam")
|
76 |
return text
|
77 |
|
78 |
-
|
|
|
|
|
|
|
79 |
inputs = tokenizer(text, return_tensors="pt").to(device)
|
80 |
with torch.no_grad():
|
81 |
waveform = model(**inputs).waveform.squeeze().cpu().numpy()
|
82 |
filename = "output.wav"
|
83 |
scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(waveform * 32767).astype(np.int16))
|
84 |
-
return filename
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
gr.Interface(
|
89 |
-
fn=tts,
|
90 |
-
inputs=gr.Textbox(label="Geli qoraal Soomaali ah"),
|
91 |
-
outputs=gr.Audio(label="Codka TTS", type="filepath"), # ✅ not gr.File
|
92 |
-
title="Somali TTS",
|
93 |
-
description="Ku qor qoraal Soomaaliyeed si aad u maqasho cod dabiici ah.",
|
94 |
-
).launch()
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from fastapi.responses import FileResponse
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
import scipy.io.wavfile
|
6 |
from transformers import VitsModel, AutoTokenizer
|
7 |
import re
|
8 |
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Load your model
|
12 |
model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
|
13 |
tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
model.to(device)
|
16 |
model.eval()
|
17 |
|
18 |
+
# Number conversion (keep your existing number_words + number_to_words)
|
19 |
number_words = {
|
20 |
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
|
21 |
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
|
|
|
79 |
text = text.replace("ZamZam", "SamSam")
|
80 |
return text
|
81 |
|
82 |
+
@app.post("/tts")
|
83 |
+
async def tts(request: Request):
|
84 |
+
data = await request.json()
|
85 |
+
text = normalize_text(data["text"])
|
86 |
inputs = tokenizer(text, return_tensors="pt").to(device)
|
87 |
with torch.no_grad():
|
88 |
waveform = model(**inputs).waveform.squeeze().cpu().numpy()
|
89 |
filename = "output.wav"
|
90 |
scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(waveform * 32767).astype(np.int16))
|
91 |
+
return FileResponse(filename, media_type="audio/wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|