somalitts / app.py
HusseinBashir's picture
Update app.py
44c93e2 verified
# Environment settings
import os
os.environ["HF_HOME"] = "/tmp"
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
os.environ["TORCH_HOME"] = "/tmp"
os.environ["XDG_CACHE_HOME"] = "/tmp"
import io
import re
import math
import numpy as np
import scipy.io.wavfile
import torch
from fastapi import FastAPI, Query
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import VitsModel, AutoTokenizer
app = FastAPI()
model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
number_words = {
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
100: "boqol", 1000: "kun"
}
shortcut_map = {
"asc": "asalaamu caleykum",
"wcs": "wacaleykum salaam",
"fcn": "fiican",
"xld": "xaaladda ka waran",
"kwrn": "kawaran",
"scw": "salalaahu caleyhi wa salam",
"alx": "alxamdu lilaahi",
"m.a": "maasha allah",
"sthy": "side tahey",
"sxp": "saaxiib"
}
country_map = {
"somalia": "Soomaaliya",
"ethiopia": "Itoobiya",
"kenya": "Kenya",
"djibouti": "Jabuuti",
"sudan": "Suudaan",
"Yeman": "yemaan",
"uganda": "Ugaandha",
"tanzania": "Tansaaniya",
"egypt": "Masar",
"libya": "Liibiya",
"algeria": "Aljeeriya",
"morocco": "Morooko",
"tunisia": "Tuniisiya",
"eritrea": "Eriteriya",
"malawi": "Malaawi",
"English": "ingiriis",
"Spain": "isbeen",
"Brazil": "baraasiil",
"niger": "Niyjer",
"Italy": "itaaliya",
"united states": "Maraykanka",
"china": "Shiinaha",
"india": "Hindiya",
"russia": "Ruushka",
"Saudi Arabia": "Sucuudi Carabiya",
"germany": "Jarmalka",
"france": "Faransiiska",
"japan": "Jabaan",
"canada": "Kanada",
"australia": "Australia"
}
def number_to_words(number):
number = int(number)
if number < 20:
return number_words[number]
elif number < 100:
tens, unit = divmod(number, 10)
return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "")
elif number < 1000:
hundreds, remainder = divmod(number, 100)
part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
if remainder:
part += " iyo " + number_to_words(remainder)
return part
elif number < 1000000:
thousands, remainder = divmod(number, 1000)
words = [number_to_words(thousands) + " kun" if thousands > 1 else "kun"]
if remainder:
words.append("iyo " + number_to_words(remainder))
return " ".join(words)
elif number < 1000000000:
millions, remainder = divmod(number, 1000000)
words = [number_to_words(millions) + " milyan" if millions > 1 else "milyan"]
if remainder:
words.append(number_to_words(remainder))
return " ".join(words)
else:
return str(number)
def normalize_text(text):
text = re.sub(r'(?i)(?<!\w)zamzam(?!\w)', 'samsam', text)
def replace_shortcuts(match):
word = match.group(0).lower()
return shortcut_map.get(word, word)
pattern = re.compile(r'\b(' + '|'.join(re.escape(k) for k in shortcut_map.keys()) + r')\b', re.IGNORECASE)
text = pattern.sub(replace_shortcuts, text)
def replace_countries(match):
word = match.group(0).lower()
return country_map.get(word, word)
country_pattern = re.compile(r'\b(' + '|'.join(re.escape(k) for k in country_map.keys()) + r')\b', re.IGNORECASE)
text = country_pattern.sub(replace_countries, text)
text = re.sub(r'(\d{1,3})(,\d{3})+', lambda m: m.group(0).replace(",", ""), text)
text = re.sub(r'\.\d+', '', text)
def replace_num(match):
return number_to_words(match.group())
text = re.sub(r'\d+', replace_num, text)
symbol_map = {
'$': 'doolar',
'=': 'egwal',
'+': 'balaas',
'#': 'haash'
}
for sym, word in symbol_map.items():
text = text.replace(sym, ' ' + word + ' ')
text = text.replace("KH", "qa").replace("Z", "S")
text = text.replace("SH", "SHa'a").replace("DH", "Dha'a")
if re.search(r'(?i)(zamzam|samsam)[\s\.,!?]*$', text.strip()):
text += " m"
return text
def waveform_to_wav_bytes(waveform: torch.Tensor, sample_rate: int = 22050) -> bytes:
np_waveform = waveform.cpu().numpy()
if np_waveform.ndim == 3:
np_waveform = np_waveform[0]
if np_waveform.ndim == 2:
np_waveform = np_waveform.mean(axis=0)
np_waveform = np.clip(np_waveform, -1.0, 1.0).astype(np.float32)
pcm_waveform = (np_waveform * 32767).astype(np.int16)
buf = io.BytesIO()
scipy.io.wavfile.write(buf, rate=sample_rate, data=pcm_waveform)
buf.seek(0)
return buf.read()
class TextIn(BaseModel):
inputs: str
@app.post("/synthesize")
async def synthesize_post(data: TextIn):
paragraphs = [p.strip() for p in data.inputs.split('\n') if p.strip()]
sample_rate = getattr(model.config, "sampling_rate", 22050)
all_waveforms = []
for paragraph in paragraphs:
normalized = normalize_text(paragraph)
inputs = tokenizer(normalized, return_tensors="pt").to(device)
with torch.no_grad():
output = model(**inputs)
waveform = (
output.waveform if hasattr(output, "waveform") else
output["waveform"] if isinstance(output, dict) and "waveform" in output else
output[0] if isinstance(output, (tuple, list)) else
None
)
if waveform is None:
continue
all_waveforms.append(waveform)
silence = torch.zeros(1, sample_rate).to(waveform.device)
all_waveforms.append(silence)
if not all_waveforms:
return {"error": "No audio generated."}
final_waveform = torch.cat(all_waveforms, dim=-1)
wav_bytes = waveform_to_wav_bytes(final_waveform, sample_rate=sample_rate)
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav")
@app.get("/synthesize")
async def synthesize_get(text: str = Query(..., description="Text to synthesize"), test: bool = Query(False)):
if test:
paragraphs = text.count("\n") + 1
duration_s = paragraphs * 6
sample_rate = 22050
t = np.linspace(0, duration_s, int(sample_rate * duration_s), endpoint=False)
freq = 440
waveform = 0.5 * np.sin(2 * math.pi * freq * t).astype(np.float32)
pcm_waveform = (waveform * 32767).astype(np.int16)
buf = io.BytesIO()
scipy.io.wavfile.write(buf, rate=sample_rate, data=pcm_waveform)
buf.seek(0)
return StreamingResponse(buf, media_type="audio/wav")
normalized = normalize_text(text)
inputs = tokenizer(normalized, return_tensors="pt").to(device)
with torch.no_grad():
output = model(**inputs)
waveform = (
output.waveform if hasattr(output, "waveform") else
output["waveform"] if isinstance(output, dict) and "waveform" in output else
output[0] if isinstance(output, (tuple, list)) else
None
)
if waveform is None:
return {"error": "Waveform not found in model output"}
sample_rate = getattr(model.config, "sampling_rate", 22050)
wav_bytes = waveform_to_wav_bytes(waveform, sample_rate=sample_rate)
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav")