Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
|
3 |
os.environ["HF_HOME"] = "/tmp"
|
4 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
5 |
os.environ["TORCH_HOME"] = "/tmp"
|
@@ -36,7 +35,8 @@ number_words = {
|
|
36 |
100: "boqol", 1000: "kun"
|
37 |
}
|
38 |
|
39 |
-
def number_to_words(number
|
|
|
40 |
if number < 20:
|
41 |
return number_words[number]
|
42 |
elif number < 100:
|
@@ -71,10 +71,20 @@ def number_to_words(number: int) -> str:
|
|
71 |
else:
|
72 |
return str(number)
|
73 |
|
74 |
-
def normalize_text(text
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
text = text.replace("KH", "qa").replace("Z", "S")
|
79 |
text = text.replace("SH", "SHa'a").replace("DH", "Dha'a")
|
80 |
text = text.replace("ZamZam", "SamSam")
|
@@ -98,36 +108,49 @@ class TextIn(BaseModel):
|
|
98 |
|
99 |
@app.post("/synthesize")
|
100 |
async def synthesize_post(data: TextIn):
|
101 |
-
|
102 |
-
inputs = tokenizer(text, return_tensors="pt").to(device)
|
103 |
-
with torch.no_grad():
|
104 |
-
output = model(**inputs)
|
105 |
-
waveform = (
|
106 |
-
output.waveform if hasattr(output, "waveform") else
|
107 |
-
output["waveform"] if isinstance(output, dict) and "waveform" in output else
|
108 |
-
output[0] if isinstance(output, (tuple, list)) else
|
109 |
-
None
|
110 |
-
)
|
111 |
-
if waveform is None:
|
112 |
-
return {"error": "Waveform not found in model output"}
|
113 |
sample_rate = getattr(model.config, "sampling_rate", 22050)
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav")
|
116 |
|
117 |
@app.get("/synthesize")
|
118 |
async def synthesize_get(text: str = Query(..., description="Text to synthesize"), test: bool = Query(False)):
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
131 |
normalized = normalize_text(text)
|
132 |
inputs = tokenizer(normalized, return_tensors="pt").to(device)
|
133 |
with torch.no_grad():
|
|
|
1 |
import os
|
|
|
2 |
os.environ["HF_HOME"] = "/tmp"
|
3 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
4 |
os.environ["TORCH_HOME"] = "/tmp"
|
|
|
35 |
100: "boqol", 1000: "kun"
|
36 |
}
|
37 |
|
38 |
+
def number_to_words(number):
|
39 |
+
number = int(number)
|
40 |
if number < 20:
|
41 |
return number_words[number]
|
42 |
elif number < 100:
|
|
|
71 |
else:
|
72 |
return str(number)
|
73 |
|
74 |
+
def normalize_text(text):
|
75 |
+
text = re.sub(r'(\d{1,3})(,\d{3})+', lambda m: m.group(0).replace(",", ""), text)
|
76 |
+
text = re.sub(r'\.\d+', '', text)
|
77 |
+
def replace_num(match):
|
78 |
+
return number_to_words(match.group())
|
79 |
+
text = re.sub(r'\d+', replace_num, text)
|
80 |
+
symbol_map = {
|
81 |
+
'$': 'doolar',
|
82 |
+
'=': 'egwal',
|
83 |
+
'+': 'balaas',
|
84 |
+
'#': 'haash'
|
85 |
+
}
|
86 |
+
for sym, word in symbol_map.items():
|
87 |
+
text = text.replace(sym, ' ' + word + ' ')
|
88 |
text = text.replace("KH", "qa").replace("Z", "S")
|
89 |
text = text.replace("SH", "SHa'a").replace("DH", "Dha'a")
|
90 |
text = text.replace("ZamZam", "SamSam")
|
|
|
108 |
|
109 |
@app.post("/synthesize")
|
110 |
async def synthesize_post(data: TextIn):
|
111 |
+
paragraphs = [p.strip() for p in data.inputs.split('\n') if p.strip()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
sample_rate = getattr(model.config, "sampling_rate", 22050)
|
113 |
+
all_waveforms = []
|
114 |
+
|
115 |
+
for paragraph in paragraphs:
|
116 |
+
normalized = normalize_text(paragraph)
|
117 |
+
inputs = tokenizer(normalized, return_tensors="pt").to(device)
|
118 |
+
with torch.no_grad():
|
119 |
+
output = model(**inputs)
|
120 |
+
waveform = (
|
121 |
+
output.waveform if hasattr(output, "waveform") else
|
122 |
+
output["waveform"] if isinstance(output, dict) and "waveform" in output else
|
123 |
+
output[0] if isinstance(output, (tuple, list)) else
|
124 |
+
None
|
125 |
+
)
|
126 |
+
if waveform is None:
|
127 |
+
continue
|
128 |
+
all_waveforms.append(waveform)
|
129 |
+
silence = torch.zeros(1, sample_rate).to(waveform.device)
|
130 |
+
all_waveforms.append(silence)
|
131 |
+
|
132 |
+
if not all_waveforms:
|
133 |
+
return {"error": "No audio generated."}
|
134 |
+
|
135 |
+
final_waveform = torch.cat(all_waveforms, dim=-1)
|
136 |
+
wav_bytes = waveform_to_wav_bytes(final_waveform, sample_rate=sample_rate)
|
137 |
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav")
|
138 |
|
139 |
@app.get("/synthesize")
|
140 |
async def synthesize_get(text: str = Query(..., description="Text to synthesize"), test: bool = Query(False)):
|
141 |
+
if test:
|
142 |
+
paragraphs = text.count("\n") + 1
|
143 |
+
duration_s = paragraphs * 6
|
144 |
+
sample_rate = 22050
|
145 |
+
t = np.linspace(0, duration_s, int(sample_rate * duration_s), endpoint=False)
|
146 |
+
freq = 440
|
147 |
+
waveform = 0.5 * np.sin(2 * math.pi * freq * t).astype(np.float32)
|
148 |
+
pcm_waveform = (waveform * 32767).astype(np.int16)
|
149 |
+
buf = io.BytesIO()
|
150 |
+
scipy.io.wavfile.write(buf, rate=sample_rate, data=pcm_waveform)
|
151 |
+
buf.seek(0)
|
152 |
+
return StreamingResponse(buf, media_type="audio/wav")
|
153 |
+
|
154 |
normalized = normalize_text(text)
|
155 |
inputs = tokenizer(normalized, return_tensors="pt").to(device)
|
156 |
with torch.no_grad():
|