Spaces:
Sleeping
Sleeping
import pytest | |
from scraibe import Scraibe, Diariser, Transcriber, Transcript | |
import os | |
def create_scraibe_instance(): | |
if "HF_TOKEN" in os.environ: | |
return Scraibe(use_auth_token=os.environ["HF_TOKEN"], whisper_model= "tiny") | |
else: | |
return Scraibe() | |
def test_scraibe_init(create_scraibe_instance): | |
model = create_scraibe_instance | |
assert isinstance(model.transcriber, Transcriber) | |
assert isinstance(model.diariser, Diariser) | |
def test_scraibe_autotranscribe(create_scraibe_instance): | |
model = create_scraibe_instance | |
transcript = model.autotranscribe('tests/audio_test_2.mp4') | |
assert isinstance(transcript, Transcript) | |
def test_scraibe_diarization(create_scraibe_instance): | |
model = create_scraibe_instance | |
diarisation_result = model.diarization('tests/audio_test_2.mp4') | |
assert isinstance(diarisation_result, dict) | |
def test_scraibe_transcribe(create_scraibe_instance): | |
model = create_scraibe_instance | |
transcription_result = model.transcribe('tests/audio_test_2.mp4') | |
assert isinstance(transcription_result, str) | |
""" def test_remove_audio_file(create_scraibe_instance): | |
model = create_scraibe_instance | |
with pytest.raises(ValueError): | |
model.remove_audio_file("non_existing_audio_file") | |
model.remove_audio_file("audio_test_2.mp4") | |
assert not os.path.exists("audio_test_2.mp4") """ | |
""" def test_get_audio_file(create_scraibe_instance): | |
model = create_scraibe_instance | |
audio_file = os.path.exist("audio_test_2.mp4") | |
assert isinstance(audio_file, AudioProcessor) | |
assert isinstance(audio_file.waveform, torch.Tensor) | |
assert isinstance(audio_file.sr, torch.Tensor) """ | |