Spaces:
Runtime error
Runtime error
bugfix
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ model = BlipForConditionalGeneration.from_pretrained(
|
|
13 |
_MODEL_PATH, use_auth_token=HF_TOKEN).half().eval().to(device)
|
14 |
|
15 |
|
16 |
-
def inference(raw_image, model_n,
|
17 |
if model_n == 'Image Captioning':
|
18 |
input = processor(raw_image).to(device, torch.float16)
|
19 |
with torch.no_grad():
|
@@ -38,8 +38,7 @@ def inference(raw_image, model_n, question, strategy):
|
|
38 |
return 'caption: '+caption
|
39 |
|
40 |
|
41 |
-
inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning'], type="value", default="Image Captioning", label="Task"), gr.inputs.
|
42 |
-
lines=2, label="Question"), gr.inputs.Radio(choices=['Beam search', 'Nucleus sampling'], type="value", default="Nucleus sampling", label="Caption Decoding Strategy")]
|
43 |
outputs = gr.outputs.Textbox(label="Output")
|
44 |
|
45 |
title = "BLIP"
|
@@ -50,4 +49,4 @@ article = "<p style='text-align: center'><a href='https://github.com/IDEA-CCNL/F
|
|
50 |
|
51 |
|
52 |
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[
|
53 |
-
['demo.jpg', "Image Captioning", "
|
|
|
13 |
_MODEL_PATH, use_auth_token=HF_TOKEN).half().eval().to(device)
|
14 |
|
15 |
|
16 |
+
def inference(raw_image, model_n, strategy):
|
17 |
if model_n == 'Image Captioning':
|
18 |
input = processor(raw_image).to(device, torch.float16)
|
19 |
with torch.no_grad():
|
|
|
38 |
return 'caption: '+caption
|
39 |
|
40 |
|
41 |
+
inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning'], type="value", default="Image Captioning", label="Task"), gr.inputs.Radio(choices=['Beam search', 'Nucleus sampling'], type="value", default="Nucleus sampling", label="Caption Decoding Strategy")]
|
|
|
42 |
outputs = gr.outputs.Textbox(label="Output")
|
43 |
|
44 |
title = "BLIP"
|
|
|
49 |
|
50 |
|
51 |
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[
|
52 |
+
['demo.jpg', "Image Captioning", "Nucleus sampling"]]).launch(enable_queue=True)
|