Spaces:
Running
on
Zero
Running
on
Zero
| ## ---------------------------------------------------------- | |
| # A SDXL pipeline can take unlimited weighted prompt | |
| # | |
| # Author: Andrew Zhu | |
| # GitHub: https://github.com/xhinker | |
| # Medium: https://medium.com/@xhinker | |
| ## ----------------------------------------------------------- | |
| import inspect | |
| import os | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| from PIL import Image | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers import DiffusionPipeline, StableDiffusionXLPipeline | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| IPAdapterMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel | |
| from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor | |
| from diffusers.models.lora import adjust_lora_scale_text_encoder | |
| from diffusers.pipelines.pipeline_utils import StableDiffusionMixin | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| deprecate, | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| is_invisible_watermark_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| if is_invisible_watermark_available(): | |
| from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | |
| def parse_prompt_attention(text): | |
| """ | |
| Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
| Accepted tokens are: | |
| (abc) - increases attention to abc by a multiplier of 1.1 | |
| (abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
| [abc] - decreases attention to abc by a multiplier of 1.1 | |
| \\( - literal character '(' | |
| \\[ - literal character '[' | |
| \\) - literal character ')' | |
| \\] - literal character ']' | |
| \\ - literal character '\' | |
| anything else - just text | |
| >>> parse_prompt_attention('normal text') | |
| [['normal text', 1.0]] | |
| >>> parse_prompt_attention('an (important) word') | |
| [['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
| >>> parse_prompt_attention('(unbalanced') | |
| [['unbalanced', 1.1]] | |
| >>> parse_prompt_attention('\\(literal\\]') | |
| [['(literal]', 1.0]] | |
| >>> parse_prompt_attention('(unnecessary)(parens)') | |
| [['unnecessaryparens', 1.1]] | |
| >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
| [['a ', 1.0], | |
| ['house', 1.5730000000000004], | |
| [' ', 1.1], | |
| ['on', 1.0], | |
| [' a ', 1.1], | |
| ['hill', 0.55], | |
| [', sun, ', 1.1], | |
| ['sky', 1.4641000000000006], | |
| ['.', 1.1]] | |
| """ | |
| import re | |
| re_attention = re.compile( | |
| r""" | |
| \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)| | |
| \)|]|[^\\()\[\]:]+|: | |
| """, | |
| re.X, | |
| ) | |
| re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) | |
| res = [] | |
| round_brackets = [] | |
| square_brackets = [] | |
| round_bracket_multiplier = 1.1 | |
| square_bracket_multiplier = 1 / 1.1 | |
| def multiply_range(start_position, multiplier): | |
| for p in range(start_position, len(res)): | |
| res[p][1] *= multiplier | |
| for m in re_attention.finditer(text): | |
| text = m.group(0) | |
| weight = m.group(1) | |
| if text.startswith("\\"): | |
| res.append([text[1:], 1.0]) | |
| elif text == "(": | |
| round_brackets.append(len(res)) | |
| elif text == "[": | |
| square_brackets.append(len(res)) | |
| elif weight is not None and len(round_brackets) > 0: | |
| multiply_range(round_brackets.pop(), float(weight)) | |
| elif text == ")" and len(round_brackets) > 0: | |
| multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
| elif text == "]" and len(square_brackets) > 0: | |
| multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
| else: | |
| parts = re.split(re_break, text) | |
| for i, part in enumerate(parts): | |
| if i > 0: | |
| res.append(["BREAK", -1]) | |
| res.append([part, 1.0]) | |
| for pos in round_brackets: | |
| multiply_range(pos, round_bracket_multiplier) | |
| for pos in square_brackets: | |
| multiply_range(pos, square_bracket_multiplier) | |
| if len(res) == 0: | |
| res = [["", 1.0]] | |
| # merge runs of identical weights | |
| i = 0 | |
| while i + 1 < len(res): | |
| if res[i][1] == res[i + 1][1]: | |
| res[i][0] += res[i + 1][0] | |
| res.pop(i + 1) | |
| else: | |
| i += 1 | |
| return res | |
| def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str): | |
| """ | |
| Get prompt token ids and weights, this function works for both prompt and negative prompt | |
| Args: | |
| pipe (CLIPTokenizer) | |
| A CLIPTokenizer | |
| prompt (str) | |
| A prompt string with weights | |
| Returns: | |
| text_tokens (list) | |
| A list contains token ids | |
| text_weight (list) | |
| A list contains the correspondent weight of token ids | |
| Example: | |
| import torch | |
| from transformers import CLIPTokenizer | |
| clip_tokenizer = CLIPTokenizer.from_pretrained( | |
| "stablediffusionapi/deliberate-v2" | |
| , subfolder = "tokenizer" | |
| , dtype = torch.float16 | |
| ) | |
| token_id_list, token_weight_list = get_prompts_tokens_with_weights( | |
| clip_tokenizer = clip_tokenizer | |
| ,prompt = "a (red:1.5) cat"*70 | |
| ) | |
| """ | |
| texts_and_weights = parse_prompt_attention(prompt) | |
| text_tokens, text_weights = [], [] | |
| for word, weight in texts_and_weights: | |
| # tokenize and discard the starting and the ending token | |
| token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt | |
| # the returned token is a 1d list: [320, 1125, 539, 320] | |
| # merge the new tokens to the all tokens holder: text_tokens | |
| text_tokens = [*text_tokens, *token] | |
| # each token chunk will come with one weight, like ['red cat', 2.0] | |
| # need to expand weight for each token. | |
| chunk_weights = [weight] * len(token) | |
| # append the weight back to the weight holder: text_weights | |
| text_weights = [*text_weights, *chunk_weights] | |
| return text_tokens, text_weights | |
| def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False): | |
| """ | |
| Produce tokens and weights in groups and pad the missing tokens | |
| Args: | |
| token_ids (list) | |
| The token ids from tokenizer | |
| weights (list) | |
| The weights list from function get_prompts_tokens_with_weights | |
| pad_last_block (bool) | |
| Control if fill the last token list to 75 tokens with eos | |
| Returns: | |
| new_token_ids (2d list) | |
| new_weights (2d list) | |
| Example: | |
| token_groups,weight_groups = group_tokens_and_weights( | |
| token_ids = token_id_list | |
| , weights = token_weight_list | |
| ) | |
| """ | |
| bos, eos = 49406, 49407 | |
| # this will be a 2d list | |
| new_token_ids = [] | |
| new_weights = [] | |
| while len(token_ids) >= 75: | |
| # get the first 75 tokens | |
| head_75_tokens = [token_ids.pop(0) for _ in range(75)] | |
| head_75_weights = [weights.pop(0) for _ in range(75)] | |
| # extract token ids and weights | |
| temp_77_token_ids = [bos] + head_75_tokens + [eos] | |
| temp_77_weights = [1.0] + head_75_weights + [1.0] | |
| # add 77 token and weights chunk to the holder list | |
| new_token_ids.append(temp_77_token_ids) | |
| new_weights.append(temp_77_weights) | |
| # padding the left | |
| if len(token_ids) > 0: | |
| padding_len = 75 - len(token_ids) if pad_last_block else 0 | |
| temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos] | |
| new_token_ids.append(temp_77_token_ids) | |
| temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0] | |
| new_weights.append(temp_77_weights) | |
| return new_token_ids, new_weights | |
| def get_weighted_text_embeddings_sdxl( | |
| pipe: StableDiffusionXLPipeline, | |
| prompt: str = "", | |
| prompt_2: str = None, | |
| neg_prompt: str = "", | |
| neg_prompt_2: str = None, | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| clip_skip: Optional[int] = None, | |
| lora_scale: Optional[int] = None, | |
| ): | |
| """ | |
| This function can process long prompt with weights, no length limitation | |
| for Stable Diffusion XL | |
| Args: | |
| pipe (StableDiffusionPipeline) | |
| prompt (str) | |
| prompt_2 (str) | |
| neg_prompt (str) | |
| neg_prompt_2 (str) | |
| num_images_per_prompt (int) | |
| device (torch.device) | |
| clip_skip (int) | |
| Returns: | |
| prompt_embeds (torch.Tensor) | |
| neg_prompt_embeds (torch.Tensor) | |
| """ | |
| device = device or pipe._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(pipe, StableDiffusionXLLoraLoaderMixin): | |
| pipe._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if pipe.text_encoder is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale) | |
| else: | |
| scale_lora_layers(pipe.text_encoder, lora_scale) | |
| if pipe.text_encoder_2 is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(pipe.text_encoder_2, lora_scale) | |
| else: | |
| scale_lora_layers(pipe.text_encoder_2, lora_scale) | |
| if prompt_2: | |
| prompt = f"{prompt} {prompt_2}" | |
| if neg_prompt_2: | |
| neg_prompt = f"{neg_prompt} {neg_prompt_2}" | |
| prompt_t1 = prompt_t2 = prompt | |
| neg_prompt_t1 = neg_prompt_t2 = neg_prompt | |
| if isinstance(pipe, TextualInversionLoaderMixin): | |
| prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer) | |
| neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer) | |
| prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2) | |
| neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2) | |
| eos = pipe.tokenizer.eos_token_id | |
| # tokenizer 1 | |
| prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1) | |
| neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1) | |
| # tokenizer 2 | |
| prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2) | |
| neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2) | |
| # padding the shorter one for prompt set 1 | |
| prompt_token_len = len(prompt_tokens) | |
| neg_prompt_token_len = len(neg_prompt_tokens) | |
| if prompt_token_len > neg_prompt_token_len: | |
| # padding the neg_prompt with eos token | |
| neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) | |
| neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) | |
| else: | |
| # padding the prompt | |
| prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) | |
| prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) | |
| # padding the shorter one for token set 2 | |
| prompt_token_len_2 = len(prompt_tokens_2) | |
| neg_prompt_token_len_2 = len(neg_prompt_tokens_2) | |
| if prompt_token_len_2 > neg_prompt_token_len_2: | |
| # padding the neg_prompt with eos token | |
| neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) | |
| neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) | |
| else: | |
| # padding the prompt | |
| prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) | |
| prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) | |
| embeds = [] | |
| neg_embeds = [] | |
| prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy()) | |
| neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights( | |
| neg_prompt_tokens.copy(), neg_prompt_weights.copy() | |
| ) | |
| prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights( | |
| prompt_tokens_2.copy(), prompt_weights_2.copy() | |
| ) | |
| neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights( | |
| neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy() | |
| ) | |
| # get prompt embeddings one by one is not working. | |
| for i in range(len(prompt_token_groups)): | |
| # get positive prompt embeddings with weights | |
| token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device) | |
| weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device) | |
| token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device) | |
| # use first text encoder | |
| prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True) | |
| # use second text encoder | |
| prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True) | |
| pooled_prompt_embeds = prompt_embeds_2[0] | |
| if clip_skip is None: | |
| prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2] | |
| prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2] | |
| else: | |
| # "2" because SDXL always indexes from the penultimate layer. | |
| prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)] | |
| prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)] | |
| prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states] | |
| token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0) | |
| for j in range(len(weight_tensor)): | |
| if weight_tensor[j] != 1.0: | |
| token_embedding[j] = ( | |
| token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j] | |
| ) | |
| token_embedding = token_embedding.unsqueeze(0) | |
| embeds.append(token_embedding) | |
| # get negative prompt embeddings with weights | |
| neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device) | |
| neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device) | |
| neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device) | |
| # use first text encoder | |
| neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True) | |
| neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2] | |
| # use second text encoder | |
| neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True) | |
| neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2] | |
| negative_pooled_prompt_embeds = neg_prompt_embeds_2[0] | |
| neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states] | |
| neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0) | |
| for z in range(len(neg_weight_tensor)): | |
| if neg_weight_tensor[z] != 1.0: | |
| neg_token_embedding[z] = ( | |
| neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z] | |
| ) | |
| neg_token_embedding = neg_token_embedding.unsqueeze(0) | |
| neg_embeds.append(neg_token_embedding) | |
| prompt_embeds = torch.cat(embeds, dim=1) | |
| negative_prompt_embeds = torch.cat(neg_embeds, dim=1) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if pipe.text_encoder is not None: | |
| if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(pipe.text_encoder, lora_scale) | |
| if pipe.text_encoder_2 is not None: | |
| if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(pipe.text_encoder_2, lora_scale) | |
| return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
| # ------------------------------------------------------------------------------------------------------------------------------- | |
| # reuse the backbone code from StableDiffusionXLPipeline | |
| # ------------------------------------------------------------------------------------------------------------------------------- | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0" | |
| , torch_dtype = torch.float16 | |
| , use_safetensors = True | |
| , variant = "fp16" | |
| , custom_pipeline = "lpw_stable_diffusion_xl", | |
| ) | |
| prompt = "a white cat running on the grass"*20 | |
| prompt2 = "play a football"*20 | |
| prompt = f"{prompt},{prompt2}" | |
| neg_prompt = "blur, low quality" | |
| pipe.to("cuda") | |
| images = pipe( | |
| prompt = prompt | |
| , negative_prompt = neg_prompt | |
| ).images[0] | |
| pipe.to("cpu") | |
| torch.cuda.empty_cache() | |
| images | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
| `timesteps` must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
| timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
| must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class SDXLLongPromptWeightingPipeline( | |
| DiffusionPipeline, | |
| StableDiffusionMixin, | |
| FromSingleFileMixin, | |
| IPAdapterMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion XL. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
| - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
| - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion XL uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([` CLIPTextModelWithProjection`]): | |
| Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
| specifically the | |
| [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
| variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`CLIPTokenizer`): | |
| Second Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): | |
| Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" | |
| _optional_components = [ | |
| "tokenizer", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "text_encoder_2", | |
| "image_encoder", | |
| "feature_extractor", | |
| ] | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "add_text_embeds", | |
| "add_time_ids", | |
| "negative_pooled_prompt_embeds", | |
| "negative_add_time_ids", | |
| ] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| feature_extractor: Optional[CLIPImageProcessor] = None, | |
| image_encoder: Optional[CLIPVisionModelWithProjection] = None, | |
| force_zeros_for_empty_prompt: bool = True, | |
| add_watermarker: Optional[bool] = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| unet=unet, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True | |
| ) | |
| self.default_sample_size = ( | |
| self.unet.config.sample_size | |
| if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size") | |
| else 128 | |
| ) | |
| add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | |
| if add_watermarker: | |
| self.watermark = StableDiffusionXLWatermarker() | |
| else: | |
| self.watermark = None | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| model_sequence = ( | |
| [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
| ) | |
| model_sequence.extend([self.unet, self.vae]) | |
| hook = None | |
| for cpu_offloaded_model in model_sequence: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| prompt_2: Optional[str] = None, | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # Define tokenizers and text encoders | |
| tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
| text_encoders = ( | |
| [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
| ) | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| # textual inversion: process multi-vector tokens if necessary | |
| prompt_embeds_list = [] | |
| prompts = [prompt, prompt_2] | |
| for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2: | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| # get unconditional embeddings for classifier free guidance | |
| zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
| if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
| elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt_2 = negative_prompt_2 or negative_prompt | |
| uncond_tokens: List[str] | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| negative_prompt_embeds_list = [] | |
| for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| negative_prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2: | |
| negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
| negative_prompt_embeds_list.append(negative_prompt_embeds) | |
| negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if do_classifier_free_guidance: | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| if output_hidden_states: | |
| image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
| image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_enc_hidden_states = self.image_encoder( | |
| torch.zeros_like(image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
| num_images_per_prompt, dim=0 | |
| ) | |
| return image_enc_hidden_states, uncond_image_enc_hidden_states | |
| else: | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_embeds = torch.zeros_like(image_embeds) | |
| return image_embeds, uncond_image_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| strength, | |
| callback_steps, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if strength < 0 or strength > 1: | |
| raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): | |
| # get the original timestep using init_timestep | |
| if denoising_start is None: | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| else: | |
| t_start = 0 | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| # Strength is irrelevant if we directly request a timestep to start at; | |
| # that is, strength is determined by the denoising_start instead. | |
| if denoising_start is not None: | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (denoising_start * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() | |
| if self.scheduler.order == 2 and num_inference_steps % 2 == 0: | |
| # if the scheduler is a 2nd order scheduler we might have to do +1 | |
| # because `num_inference_steps` might be even given that every timestep | |
| # (except the highest one) is duplicated. If `num_inference_steps` is even it would | |
| # mean that we cut the timesteps in the middle of the denoising step | |
| # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1 | |
| # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler | |
| num_inference_steps = num_inference_steps + 1 | |
| # because t_n+1 >= t_n, we slice the timesteps starting from the end | |
| timesteps = timesteps[-num_inference_steps:] | |
| return timesteps, num_inference_steps | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_latents( | |
| self, | |
| image, | |
| mask, | |
| width, | |
| height, | |
| num_channels_latents, | |
| timestep, | |
| batch_size, | |
| num_images_per_prompt, | |
| dtype, | |
| device, | |
| generator=None, | |
| add_noise=True, | |
| latents=None, | |
| is_strength_max=True, | |
| return_noise=False, | |
| return_image_latents=False, | |
| ): | |
| batch_size *= num_images_per_prompt | |
| if image is None: | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| elif mask is None: | |
| if not isinstance(image, (torch.Tensor, Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| # Offload text encoder if `enable_model_cpu_offload` was enabled | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.text_encoder_2.to("cpu") | |
| torch.cuda.empty_cache() | |
| image = image.to(device=device, dtype=dtype) | |
| if image.shape[1] == 4: | |
| init_latents = image | |
| else: | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.config.force_upcast: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| elif isinstance(generator, list): | |
| init_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
| for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
| if self.vae.config.force_upcast: | |
| self.vae.to(dtype) | |
| init_latents = init_latents.to(dtype) | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // init_latents.shape[0] | |
| init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| init_latents = torch.cat([init_latents], dim=0) | |
| if add_noise: | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| latents = init_latents | |
| return latents | |
| else: | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if (image is None or timestep is None) and not is_strength_max: | |
| raise ValueError( | |
| "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." | |
| "However, either the image or the noise timestep has not been provided." | |
| ) | |
| if image.shape[1] == 4: | |
| image_latents = image.to(device=device, dtype=dtype) | |
| image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) | |
| elif return_image_latents or (latents is None and not is_strength_max): | |
| image = image.to(device=device, dtype=dtype) | |
| image_latents = self._encode_vae_image(image=image, generator=generator) | |
| image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) | |
| if latents is None and add_noise: | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # if strength is 1. then initialise the latents to noise, else initial to image + noise | |
| latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) | |
| # if pure noise then scale the initial latents by the Scheduler's init sigma | |
| latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents | |
| elif add_noise: | |
| noise = latents.to(device) | |
| latents = noise * self.scheduler.init_noise_sigma | |
| else: | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = image_latents.to(device) | |
| outputs = (latents,) | |
| if return_noise: | |
| outputs += (noise,) | |
| if return_image_latents: | |
| outputs += (image_latents,) | |
| return outputs | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| dtype = image.dtype | |
| if self.vae.config.force_upcast: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
| if self.vae.config.force_upcast: | |
| self.vae.to(dtype) | |
| image_latents = image_latents.to(dtype) | |
| image_latents = self.vae.config.scaling_factor * image_latents | |
| return image_latents | |
| def prepare_mask_latents( | |
| self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance | |
| ): | |
| # resize the mask to latents shape as we concatenate the mask to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| mask = torch.nn.functional.interpolate( | |
| mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| ) | |
| mask = mask.to(device=device, dtype=dtype) | |
| # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method | |
| if mask.shape[0] < batch_size: | |
| if not batch_size % mask.shape[0] == 0: | |
| raise ValueError( | |
| "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" | |
| f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" | |
| " of masks that you pass is divisible by the total requested batch size." | |
| ) | |
| mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) | |
| mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | |
| if masked_image is not None and masked_image.shape[1] == 4: | |
| masked_image_latents = masked_image | |
| else: | |
| masked_image_latents = None | |
| if masked_image is not None: | |
| if masked_image_latents is None: | |
| masked_image = masked_image.to(device=device, dtype=dtype) | |
| masked_image_latents = self._encode_vae_image(masked_image, generator=generator) | |
| if masked_image_latents.shape[0] < batch_size: | |
| if not batch_size % masked_image_latents.shape[0] == 0: | |
| raise ValueError( | |
| "The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
| f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." | |
| " Make sure the number of images that you pass is divisible by the total requested batch size." | |
| ) | |
| masked_image_latents = masked_image_latents.repeat( | |
| batch_size // masked_image_latents.shape[0], 1, 1, 1 | |
| ) | |
| masked_image_latents = ( | |
| torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents | |
| ) | |
| # aligning device to prevent device errors when concating it with the latent model input | |
| masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
| return mask, masked_image_latents | |
| def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| passed_add_embed_dim = ( | |
| self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim | |
| ) | |
| expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
| if expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| return add_time_ids | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae | |
| def upcast_vae(self): | |
| dtype = self.vae.dtype | |
| self.vae.to(dtype=torch.float32) | |
| use_torch_2_0_or_xformers = isinstance( | |
| self.vae.decoder.mid_block.attentions[0].processor, | |
| (AttnProcessor2_0, XFormersAttnProcessor), | |
| ) | |
| # if xformers or torch_2_0 is used attention block does not need | |
| # to be in float32 which can save lots of memory | |
| if use_torch_2_0_or_xformers: | |
| self.vae.post_quant_conv.to(dtype) | |
| self.vae.decoder.conv_in.to(dtype) | |
| self.vae.decoder.mid_block.to(dtype) | |
| # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
| def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
| """ | |
| See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| timesteps (`torch.Tensor`): | |
| generate embedding vectors at these timesteps | |
| embedding_dim (`int`, *optional*, defaults to 512): | |
| dimension of the embeddings to generate | |
| dtype: | |
| data type of the generated embeddings | |
| Returns: | |
| `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000.0 | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def guidance_rescale(self): | |
| return self._guidance_rescale | |
| def clip_skip(self): | |
| return self._clip_skip | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
| def cross_attention_kwargs(self): | |
| return self._cross_attention_kwargs | |
| def denoising_end(self): | |
| return self._denoising_end | |
| def denoising_start(self): | |
| return self._denoising_start | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def __call__( | |
| self, | |
| prompt: str = None, | |
| prompt_2: Optional[str] = None, | |
| image: Optional[PipelineImageInput] = None, | |
| mask_image: Optional[PipelineImageInput] = None, | |
| masked_image_latents: Optional[torch.Tensor] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| strength: float = 0.8, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| denoising_start: Optional[float] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str`): | |
| The prompt to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str`): | |
| The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| image (`PipelineImageInput`, *optional*): | |
| `Image`, or tensor representing an image batch, that will be used as the starting point for the | |
| process. | |
| mask_image (`PipelineImageInput`, *optional*): | |
| `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | |
| replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a | |
| PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should | |
| contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. | |
| `image` will be used as a starting point, adding more noise to it the larger the `strength`. The | |
| number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added | |
| noise will be maximum and the denoising process will run for the full number of iterations specified in | |
| `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| denoising_start (`float`, *optional*): | |
| When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and | |
| it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, | |
| strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline | |
| is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image | |
| Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). | |
| denoising_end (`float`, *optional*): | |
| When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
| still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be | |
| denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the | |
| final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline | |
| forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image | |
| Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str`): | |
| The prompt not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str`): | |
| The prompt not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): | |
| Optional image input to work with IP Adapters. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
| of a plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | |
| [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
| Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
| original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
| `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as | |
| explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
| `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
| `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
| `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
| not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in | |
| section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
| `tuple`. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| # 0. Default height and width to unet | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| strength, | |
| callback_steps, | |
| negative_prompt, | |
| negative_prompt_2, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._denoising_end = denoising_end | |
| self._denoising_start = denoising_start | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| if ip_adapter_image is not None: | |
| output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True | |
| image_embeds, negative_image_embeds = self.encode_image( | |
| ip_adapter_image, device, num_images_per_prompt, output_hidden_state | |
| ) | |
| if self.do_classifier_free_guidance: | |
| image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
| # 3. Encode input prompt | |
| lora_scale = ( | |
| self._cross_attention_kwargs.get("scale", None) if self._cross_attention_kwargs is not None else None | |
| ) | |
| negative_prompt = negative_prompt if negative_prompt is not None else "" | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = get_weighted_text_embeddings_sdxl( | |
| pipe=self, | |
| prompt=prompt, | |
| neg_prompt=negative_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| clip_skip=clip_skip, | |
| lora_scale=lora_scale, | |
| ) | |
| dtype = prompt_embeds.dtype | |
| if isinstance(image, Image.Image): | |
| image = self.image_processor.preprocess(image, height=height, width=width) | |
| if image is not None: | |
| image = image.to(device=self.device, dtype=dtype) | |
| if isinstance(mask_image, Image.Image): | |
| mask = self.mask_processor.preprocess(mask_image, height=height, width=width) | |
| else: | |
| mask = mask_image | |
| if mask_image is not None: | |
| mask = mask.to(device=self.device, dtype=dtype) | |
| if masked_image_latents is not None: | |
| masked_image = masked_image_latents | |
| elif image.shape[1] == 4: | |
| # if image is in latent space, we can't mask it | |
| masked_image = None | |
| else: | |
| masked_image = image * (mask < 0.5) | |
| else: | |
| mask = None | |
| # 4. Prepare timesteps | |
| def denoising_value_valid(dnv): | |
| return isinstance(dnv, float) and 0 < dnv < 1 | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| if image is not None: | |
| timesteps, num_inference_steps = self.get_timesteps( | |
| num_inference_steps, | |
| strength, | |
| device, | |
| denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None, | |
| ) | |
| # check that number of inference steps is not < 1 - as this doesn't make sense | |
| if num_inference_steps < 1: | |
| raise ValueError( | |
| f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" | |
| f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." | |
| ) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| is_strength_max = strength == 1.0 | |
| add_noise = True if self.denoising_start is None else False | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.vae.config.latent_channels | |
| num_channels_unet = self.unet.config.in_channels | |
| return_image_latents = num_channels_unet == 4 | |
| latents = self.prepare_latents( | |
| image=image, | |
| mask=mask, | |
| width=width, | |
| height=height, | |
| num_channels_latents=num_channels_unet, | |
| timestep=latent_timestep, | |
| batch_size=batch_size, | |
| num_images_per_prompt=num_images_per_prompt, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| add_noise=add_noise, | |
| latents=latents, | |
| is_strength_max=is_strength_max, | |
| return_noise=True, | |
| return_image_latents=return_image_latents, | |
| ) | |
| if mask is not None: | |
| if return_image_latents: | |
| latents, noise, image_latents = latents | |
| else: | |
| latents, noise = latents | |
| # 5.1 Prepare mask latent variables | |
| if mask is not None: | |
| mask, masked_image_latents = self.prepare_mask_latents( | |
| mask=mask, | |
| masked_image=masked_image, | |
| batch_size=batch_size * num_images_per_prompt, | |
| height=height, | |
| width=width, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| ) | |
| # Check that sizes of mask, masked image and latents match | |
| if num_channels_unet == 9: | |
| # default case for runwayml/stable-diffusion-inpainting | |
| num_channels_mask = mask.shape[1] | |
| num_channels_masked_image = masked_image_latents.shape[1] | |
| if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet: | |
| raise ValueError( | |
| f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
| f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
| f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
| f" = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of" | |
| " `pipeline.unet` or your `mask_image` or `image` input." | |
| ) | |
| elif num_channels_unet != 4: | |
| raise ValueError( | |
| f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 6.1 Add image embeds for IP-Adapter | |
| added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else {} | |
| height, width = latents.shape[-2:] | |
| height = height * self.vae_scale_factor | |
| width = width * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 7. Prepare added time ids & embeddings | |
| add_text_embeds = pooled_prompt_embeds | |
| add_time_ids = self._get_add_time_ids( | |
| original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
| ) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| # 7.1 Apply denoising_end | |
| if ( | |
| self.denoising_end is not None | |
| and self.denoising_start is not None | |
| and denoising_value_valid(self.denoising_end) | |
| and denoising_value_valid(self.denoising_start) | |
| and self.denoising_start >= self.denoising_end | |
| ): | |
| raise ValueError( | |
| f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: " | |
| + f" {self.denoising_end} when using type float." | |
| ) | |
| elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
| timesteps = timesteps[:num_inference_steps] | |
| # 8. Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| self._num_timesteps = len(timesteps) | |
| # 9. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| if mask is not None and num_channels_unet == 9: | |
| latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) | |
| # predict the noise residual | |
| added_cond_kwargs.update({"text_embeds": add_text_embeds, "time_ids": add_time_ids}) | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if self.do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if mask is not None and num_channels_unet == 4: | |
| init_latents_proper = image_latents | |
| if self.do_classifier_free_guidance: | |
| init_mask, _ = mask.chunk(2) | |
| else: | |
| init_mask = mask | |
| if i < len(timesteps) - 1: | |
| noise_timestep = timesteps[i + 1] | |
| init_latents_proper = self.scheduler.add_noise( | |
| init_latents_proper, noise, torch.tensor([noise_timestep]) | |
| ) | |
| latents = (1 - init_mask) * init_latents_proper + init_mask * latents | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | |
| negative_pooled_prompt_embeds = callback_outputs.pop( | |
| "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
| ) | |
| add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| # unscale/denormalize the latents | |
| # denormalize with the mean and std if available and not None | |
| has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None | |
| has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None | |
| if has_latents_mean and has_latents_std: | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
| ) | |
| latents_std = ( | |
| torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
| ) | |
| latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean | |
| else: | |
| latents = latents / self.vae.config.scaling_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| else: | |
| image = latents | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| def text2img( | |
| self, | |
| prompt: str = None, | |
| prompt_2: Optional[str] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| denoising_start: Optional[float] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| r""" | |
| Function invoked when calling pipeline for text-to-image. | |
| Refer to the documentation of the `__call__` method for parameter descriptions. | |
| """ | |
| return self.__call__( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| timesteps=timesteps, | |
| denoising_start=denoising_start, | |
| denoising_end=denoising_end, | |
| guidance_scale=guidance_scale, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| latents=latents, | |
| ip_adapter_image=ip_adapter_image, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| guidance_rescale=guidance_rescale, | |
| original_size=original_size, | |
| crops_coords_top_left=crops_coords_top_left, | |
| target_size=target_size, | |
| clip_skip=clip_skip, | |
| callback_on_step_end=callback_on_step_end, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| **kwargs, | |
| ) | |
| def img2img( | |
| self, | |
| prompt: str = None, | |
| prompt_2: Optional[str] = None, | |
| image: Optional[PipelineImageInput] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| strength: float = 0.8, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| denoising_start: Optional[float] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| r""" | |
| Function invoked when calling pipeline for image-to-image. | |
| Refer to the documentation of the `__call__` method for parameter descriptions. | |
| """ | |
| return self.__call__( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| image=image, | |
| height=height, | |
| width=width, | |
| strength=strength, | |
| num_inference_steps=num_inference_steps, | |
| timesteps=timesteps, | |
| denoising_start=denoising_start, | |
| denoising_end=denoising_end, | |
| guidance_scale=guidance_scale, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| latents=latents, | |
| ip_adapter_image=ip_adapter_image, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| guidance_rescale=guidance_rescale, | |
| original_size=original_size, | |
| crops_coords_top_left=crops_coords_top_left, | |
| target_size=target_size, | |
| clip_skip=clip_skip, | |
| callback_on_step_end=callback_on_step_end, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| **kwargs, | |
| ) | |
| def inpaint( | |
| self, | |
| prompt: str = None, | |
| prompt_2: Optional[str] = None, | |
| image: Optional[PipelineImageInput] = None, | |
| mask_image: Optional[PipelineImageInput] = None, | |
| masked_image_latents: Optional[torch.Tensor] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| strength: float = 0.8, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| denoising_start: Optional[float] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| r""" | |
| Function invoked when calling pipeline for inpainting. | |
| Refer to the documentation of the `__call__` method for parameter descriptions. | |
| """ | |
| return self.__call__( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| image=image, | |
| mask_image=mask_image, | |
| masked_image_latents=masked_image_latents, | |
| height=height, | |
| width=width, | |
| strength=strength, | |
| num_inference_steps=num_inference_steps, | |
| timesteps=timesteps, | |
| denoising_start=denoising_start, | |
| denoising_end=denoising_end, | |
| guidance_scale=guidance_scale, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| latents=latents, | |
| ip_adapter_image=ip_adapter_image, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| guidance_rescale=guidance_rescale, | |
| original_size=original_size, | |
| crops_coords_top_left=crops_coords_top_left, | |
| target_size=target_size, | |
| clip_skip=clip_skip, | |
| callback_on_step_end=callback_on_step_end, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| **kwargs, | |
| ) | |
| # Override to properly handle the loading and unloading of the additional text encoder. | |
| def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): | |
| # We could have accessed the unet config from `lora_state_dict()` too. We pass | |
| # it here explicitly to be able to tell that it's coming from an SDXL | |
| # pipeline. | |
| state_dict, network_alphas = self.lora_state_dict( | |
| pretrained_model_name_or_path_or_dict, | |
| unet_config=self.unet.config, | |
| **kwargs, | |
| ) | |
| self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) | |
| text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | |
| if len(text_encoder_state_dict) > 0: | |
| self.load_lora_into_text_encoder( | |
| text_encoder_state_dict, | |
| network_alphas=network_alphas, | |
| text_encoder=self.text_encoder, | |
| prefix="text_encoder", | |
| lora_scale=self.lora_scale, | |
| ) | |
| text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | |
| if len(text_encoder_2_state_dict) > 0: | |
| self.load_lora_into_text_encoder( | |
| text_encoder_2_state_dict, | |
| network_alphas=network_alphas, | |
| text_encoder=self.text_encoder_2, | |
| prefix="text_encoder_2", | |
| lora_scale=self.lora_scale, | |
| ) | |
| def save_lora_weights( | |
| cls, | |
| save_directory: Union[str, os.PathLike], | |
| unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = False, | |
| ): | |
| state_dict = {} | |
| def pack_weights(layers, prefix): | |
| layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers | |
| layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} | |
| return layers_state_dict | |
| state_dict.update(pack_weights(unet_lora_layers, "unet")) | |
| if text_encoder_lora_layers and text_encoder_2_lora_layers: | |
| state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) | |
| state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | |
| cls.write_lora_layers( | |
| state_dict=state_dict, | |
| save_directory=save_directory, | |
| is_main_process=is_main_process, | |
| weight_name=weight_name, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| ) | |
| def _remove_text_encoder_monkey_patch(self): | |
| self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) | |
| self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) |