Spaces:
Sleeping
Sleeping
File size: 16,326 Bytes
b23e1bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import os
import dotenv
import logging
import gradio as gr
import glob
import concurrent.futures
from typing import List, Any
from tqdm import tqdm
# LangChain imports
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.output_parsers import StrOutputParser
from langchain import hub
from langgraph.graph import END, StateGraph, START
from typing_extensions import TypedDict
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.callbacks import get_openai_callback
# Load environment variables
dotenv.load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Check if OpenAI API key is set
if os.getenv("OPENAI_API_KEY") is None:
raise ValueError("OPENAI_API_KEY is not set in .env file")
# Initialize Retriever for all Markdown files in /MarkdownOutput
def initialize_retriever():
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Find all markdown files in /MarkdownOutput
markdown_files = glob.glob("./MarkdownOutput/**/*.md", recursive=True)
logger.info(f"Found {len(markdown_files)} markdown files in ./MarkdownOutput.")
# Load and split all markdown documents
all_doc_splits = []
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
for idx, md_path in enumerate(markdown_files, 1):
logger.info(f"Loading and splitting file {idx}/{len(markdown_files)}: {md_path}")
loader = UnstructuredMarkdownLoader(md_path)
docs = loader.load()
splits = text_splitter.split_documents(docs)
all_doc_splits.extend(splits)
logger.info(f"File {md_path} loaded and split into {len(splits)} chunks.")
logger.info(f"Total document splits: {len(all_doc_splits)}. Creating vector store...")
# Create vector store
vectorstore = Chroma.from_documents(
documents=all_doc_splits,
collection_name="rag-chroma",
embedding=OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=3072,
timeout=120,
),
persist_directory="./chroma_rag_cache"
)
logger.info("Vector store created and persisted to ./chroma_rag_cache.")
# Configure retriever
retriever = vectorstore.as_retriever(
search_type="mmr",
search_kwargs={
"k": 40,
"fetch_k": 200,
"lambda_mult": 0.2,
"filter": None,
"score_threshold": 0.7,
}
)
logger.info("Retriever configured and ready to use.")
return retriever
# Define graders and components
def setup_components(retriever, model_choice):
# Data models for grading
class GradeDocuments(BaseModel):
"""Binary score for relevance check on retrieved documents."""
binary_score: str = Field(
description="Documents are relevant to the question, 'yes' or 'no'"
)
class GradeHallucinations(BaseModel):
"""Binary score for hallucination present in generation answer."""
binary_score: str = Field(
description="Answer is grounded in the facts, 'yes' or 'no'"
)
class GradeAnswer(BaseModel):
"""Binary score to assess answer addresses question."""
binary_score: str = Field(
description="Answer addresses the question, 'yes' or 'no'"
)
# LLM models
llm = ChatOpenAI(model=model_choice, temperature=0)
doc_grader = llm.with_structured_output(GradeDocuments)
hallucination_grader_llm = llm.with_structured_output(GradeHallucinations)
answer_grader_llm = llm.with_structured_output(GradeAnswer)
# Prompts
# Document grading prompt
system_doc = """You are a grader assessing relevance of a retrieved document to a user question. \n
It does not need to be a stringent test. The goal is to filter out erroneous retrievals. \n
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
grade_prompt = ChatPromptTemplate.from_messages(
[
("system", system_doc),
("human", "Retrieved document: \n\n {document} \n\n User question: {question}"),
]
)
retrieval_grader = grade_prompt | doc_grader
# Hallucination grading prompt
system_hallucination = """You are a grader assessing whether an LLM generation is grounded in / supported by a set of retrieved facts. \n
Give a binary score 'yes' or 'no'. 'Yes' means that the answer is grounded in / supported by the set of facts."""
hallucination_prompt = ChatPromptTemplate.from_messages(
[
("system", system_hallucination),
("human", "Set of facts: \n\n {documents} \n\n LLM generation: {generation}"),
]
)
hallucination_grader = hallucination_prompt | hallucination_grader_llm
# Answer grading prompt
system_answer = """You are a grader assessing whether an answer addresses / resolves a question \n
Give a binary score 'yes' or 'no'. Yes' means that the answer resolves the question."""
answer_prompt = ChatPromptTemplate.from_messages(
[
("system", system_answer),
("human", "User question: \n\n {question} \n\n LLM generation: {generation}"),
]
)
answer_grader = answer_prompt | answer_grader_llm
# Question rewriter prompt
system_rewrite = """You a question re-writer that converts an input question to a better version that is optimized \n
for vectorstore retrieval. Look at the input and try to reason about the underlying semantic intent / meaning."""
re_write_prompt = ChatPromptTemplate.from_messages(
[
("system", system_rewrite),
(
"human",
"Here is the initial question: \n\n {question} \n Formulate an improved question.",
),
]
)
question_rewriter = re_write_prompt | llm | StrOutputParser()
# RAG generation prompt and chain
prompt = hub.pull("rlm/rag-prompt")
rag_chain = prompt | llm | StrOutputParser()
return {
"retriever": retriever,
"retrieval_grader": retrieval_grader,
"hallucination_grader": hallucination_grader,
"answer_grader": answer_grader,
"question_rewriter": question_rewriter,
"rag_chain": rag_chain
}
# Build the RAG graph
def build_rag_graph(components):
# Define graph state
class GraphState(TypedDict):
"""Represents the state of our graph."""
question: str
generation: str
documents: List[str]
# Node functions
def retrieve(state):
"""Retrieve documents"""
question = state["question"]
documents = components["retriever"].get_relevant_documents(question)
return {"documents": documents, "question": question}
def generate(state):
"""Generate answer"""
question = state["question"]
documents = state["documents"]
generation = components["rag_chain"].invoke({"context": documents, "question": question})
return {"documents": documents, "question": question, "generation": generation}
def grade_documents(state):
"""Determines whether the retrieved documents are relevant to the question."""
question = state["question"]
documents = state["documents"]
# Score each doc
filtered_docs = []
for d in documents:
score = components["retrieval_grader"].invoke(
{"question": question, "document": d.page_content}
)
grade = score.binary_score
if grade == "yes":
filtered_docs.append(d)
return {"documents": filtered_docs, "question": question}
def transform_query(state):
"""Transform the query to produce a better question."""
question = state["question"]
documents = state["documents"]
better_question = components["question_rewriter"].invoke({"question": question})
return {"documents": documents, "question": better_question}
# Edge functions
def decide_to_generate(state):
"""Determines whether to generate an answer, or re-generate a question."""
filtered_documents = state["documents"]
if not filtered_documents:
# All documents have been filtered out
return "transform_query"
else:
# We have relevant documents, so generate answer
return "generate"
def grade_generation_v_documents_and_question(state):
"""Determines whether the generation is grounded in the document and answers question."""
question = state["question"]
documents = state["documents"]
generation = state["generation"]
score = components["hallucination_grader"].invoke(
{"documents": documents, "generation": generation}
)
grade = score.binary_score
# Check hallucination
if grade == "yes":
# Check question-answering
score = components["answer_grader"].invoke({"question": question, "generation": generation})
grade = score.binary_score
if grade == "yes":
return "useful"
else:
return "not useful"
else:
return "not supported"
# Build the graph
workflow = StateGraph(GraphState)
# Add nodes
workflow.add_node("retrieve", retrieve)
workflow.add_node("grade_documents", grade_documents)
workflow.add_node("generate", generate)
workflow.add_node("transform_query", transform_query)
# Add edges
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "retrieve")
workflow.add_conditional_edges(
"generate",
grade_generation_v_documents_and_question,
{
"not supported": "generate",
"useful": END,
"not useful": "transform_query",
},
)
# Compile the graph
return workflow.compile()
# Initialize global variables
retriever = None
rag_app = None
components = None
current_model_choice = "gpt-4.1" # Default
# Run PDF processing and RAG setup ONCE at startup, with default model
retriever = initialize_retriever()
if retriever is not None:
components = setup_components(retriever, current_model_choice)
rag_app = build_rag_graph(components)
else:
logger.error("No retriever could be initialized. Please add PDF files to the Data directory.")
# Processing function for Gradio
def process_query(question, display_logs=False, model_choice="gpt-4.1"):
logs = []
answer = ""
token_usage = {}
try:
global retriever, rag_app, components, current_model_choice
if retriever is None:
logs.append("Error: No PDF files found. Please add PDF files to the Data directory and restart the app.")
return "Error: No PDF files found. Please add PDF files to the Data directory.", "\n".join(logs), token_usage
# If model_choice changed, re-initialize components and rag_app
if model_choice != current_model_choice:
logs.append(f"Switching model to {model_choice} ...")
components = setup_components(retriever, model_choice)
rag_app = build_rag_graph(components)
current_model_choice = model_choice
logs.append("Processing query: " + question)
logs.append(f"Using model: {model_choice}")
logs.append("Starting RAG pipeline...")
final_output = None
with get_openai_callback() as cb:
for i, output in enumerate(rag_app.stream({"question": question})):
step_info = f"Step {i+1}: "
if 'retrieve' in output:
step_info += f"Retrieved {len(output['retrieve']['documents'])} documents"
elif 'grade_documents' in output:
step_info += f"Graded documents, {len(output['grade_documents']['documents'])} deemed relevant"
elif 'transform_query' in output:
step_info += f"Transformed query to: {output['transform_query']['question']}"
elif 'generate' in output:
step_info += "Generated answer"
final_output = output
logs.append(step_info)
# Store token usage information
token_usage = {
"total_tokens": cb.total_tokens,
"prompt_tokens": cb.prompt_tokens,
"completion_tokens": cb.completion_tokens,
"total_cost": cb.total_cost
}
logs.append(f"Token usage: {token_usage}")
if final_output and 'generate' in final_output:
answer = final_output['generate']['generation']
logs.append("Final answer generated successfully")
else:
answer = "No answer could be generated. Please try rephrasing your question."
logs.append("Failed to generate answer")
except Exception as e:
logs.append(f"Error: {str(e)}")
answer = f"An error occurred: {str(e)}"
return answer, "\n".join(logs) if display_logs else "", token_usage
# Create Gradio interface
with gr.Blocks(title="Self-RAG Document Assistant", theme=gr.themes.Base()) as demo:
with gr.Row():
gr.Markdown("# Self-RAG Document Assistant")
with gr.Row():
gr.Markdown("""This application uses a Self-RAG (Retrieval Augmented Generation) system to
provide accurate answers by:
1. Retrieving relevant documents from your PDF database
2. Grading document relevance to your question
3. Generating answers grounded in these documents
4. Self-checking for hallucinations and question addressing""")
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(
label="Your Question",
placeholder="Ask a question about your documents...",
lines=4
)
with gr.Column(scale=1):
model_choice_input = gr.Dropdown(
label="Model",
choices=["gpt-4.1", "gpt-4.1-mini", "gpt-4.1-nano"],
value="gpt-4.1"
)
show_logs = gr.Checkbox(label="Show Debugging Logs", value=False)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Row():
with gr.Column():
answer_output = gr.Textbox(
label="Answer",
lines=10,
placeholder="Your answer will appear here...",
)
with gr.Row():
logs_output = gr.Textbox(
label="Process Logs",
lines=15,
visible=False
)
with gr.Row():
token_usage_output = gr.JSON(
label="Token Usage Statistics",
visible=True
)
# Event handlers
submit_btn.click(
fn=process_query,
inputs=[query_input, show_logs, model_choice_input],
outputs=[answer_output, logs_output, token_usage_output]
)
show_logs.change(
fn=lambda x: gr.update(visible=x),
inputs=[show_logs],
outputs=[logs_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=False)
|