BhargavR commited on
Commit
2d660f6
·
0 Parent(s):

Add all my files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +35 -0
  2. .gitattributes:Zone.Identifier +0 -0
  3. README.md +11 -0
  4. README.md:Zone.Identifier +0 -0
  5. app.py +330 -0
  6. app.py:Zone.Identifier +0 -0
  7. apply_net.py +359 -0
  8. apply_net.py:Zone.Identifier +0 -0
  9. ckpt/densepose/model_final_162be9.pkl +3 -0
  10. ckpt/densepose/model_final_162be9.pkl:Zone.Identifier +0 -0
  11. ckpt/humanparsing/parsing_atr.onnx +3 -0
  12. ckpt/humanparsing/parsing_atr.onnx:Zone.Identifier +0 -0
  13. ckpt/humanparsing/parsing_lip.onnx +3 -0
  14. ckpt/humanparsing/parsing_lip.onnx:Zone.Identifier +0 -0
  15. ckpt/openpose/.DS_Store +0 -0
  16. ckpt/openpose/.DS_Store:Zone.Identifier +0 -0
  17. ckpt/openpose/ckpts/body_pose_model.pth +3 -0
  18. ckpt/openpose/ckpts/body_pose_model.pth:Zone.Identifier +0 -0
  19. configs/Base-DensePose-RCNN-FPN.yaml +48 -0
  20. configs/Base-DensePose-RCNN-FPN.yaml:Zone.Identifier +0 -0
  21. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml +16 -0
  22. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml:Zone.Identifier +0 -0
  23. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml +23 -0
  24. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml:Zone.Identifier +0 -0
  25. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml +23 -0
  26. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml:Zone.Identifier +0 -0
  27. configs/cse/Base-DensePose-RCNN-FPN-Human.yaml +20 -0
  28. configs/cse/Base-DensePose-RCNN-FPN-Human.yaml:Zone.Identifier +0 -0
  29. configs/cse/Base-DensePose-RCNN-FPN.yaml +60 -0
  30. configs/cse/Base-DensePose-RCNN-FPN.yaml:Zone.Identifier +0 -0
  31. configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml +12 -0
  32. configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml:Zone.Identifier +0 -0
  33. configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml +12 -0
  34. configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml:Zone.Identifier +0 -0
  35. configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml +12 -0
  36. configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml:Zone.Identifier +0 -0
  37. configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml +12 -0
  38. configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml:Zone.Identifier +0 -0
  39. configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml +12 -0
  40. configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml:Zone.Identifier +0 -0
  41. configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml +12 -0
  42. configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml:Zone.Identifier +0 -0
  43. configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml +12 -0
  44. configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml:Zone.Identifier +0 -0
  45. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml +133 -0
  46. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml:Zone.Identifier +0 -0
  47. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml +133 -0
  48. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml:Zone.Identifier +0 -0
  49. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml +119 -0
  50. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml:Zone.Identifier +0 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitattributes:Zone.Identifier ADDED
File without changes
README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Change Clothes AI
3
+ emoji: 👚
4
+ colorFrom: yellow
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 4.36.1
8
+ app_file: app.py
9
+ pinned: false
10
+ short_description: AI Clothes Changer Online
11
+ ---
README.md:Zone.Identifier ADDED
File without changes
app.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ from PIL import Image
4
+ from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
5
+ from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
6
+ from src.unet_hacked_tryon import UNet2DConditionModel
7
+ from transformers import (
8
+ CLIPImageProcessor,
9
+ CLIPVisionModelWithProjection,
10
+ CLIPTextModel,
11
+ CLIPTextModelWithProjection,
12
+ )
13
+ from diffusers import DDPMScheduler,AutoencoderKL
14
+ from typing import List
15
+
16
+
17
+ import torch
18
+ import os
19
+ from transformers import AutoTokenizer
20
+
21
+ import numpy as np
22
+ from utils_mask import get_mask_location
23
+ from torchvision import transforms
24
+ import apply_net
25
+ from preprocess.humanparsing.run_parsing import Parsing
26
+ from preprocess.openpose.run_openpose import OpenPose
27
+ from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
28
+ from torchvision.transforms.functional import to_pil_image
29
+
30
+
31
+ def pil_to_binary_mask(pil_image, threshold=0):
32
+ np_image = np.array(pil_image)
33
+ grayscale_image = Image.fromarray(np_image).convert("L")
34
+ binary_mask = np.array(grayscale_image) > threshold
35
+ mask = np.zeros(binary_mask.shape, dtype=np.uint8)
36
+ for i in range(binary_mask.shape[0]):
37
+ for j in range(binary_mask.shape[1]):
38
+ if binary_mask[i,j] == True :
39
+ mask[i,j] = 1
40
+ mask = (mask*255).astype(np.uint8)
41
+ output_mask = Image.fromarray(mask)
42
+ return output_mask
43
+
44
+
45
+ base_path = 'yisol/IDM-VTON'
46
+ example_path = os.path.join(os.path.dirname(__file__), 'example')
47
+
48
+ unet = UNet2DConditionModel.from_pretrained(
49
+ base_path,
50
+ subfolder="unet",
51
+ torch_dtype=torch.float16,
52
+ )
53
+ unet.requires_grad_(False)
54
+ tokenizer_one = AutoTokenizer.from_pretrained(
55
+ base_path,
56
+ subfolder="tokenizer",
57
+ revision=None,
58
+ use_fast=False,
59
+ )
60
+ tokenizer_two = AutoTokenizer.from_pretrained(
61
+ base_path,
62
+ subfolder="tokenizer_2",
63
+ revision=None,
64
+ use_fast=False,
65
+ )
66
+ noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
67
+
68
+ text_encoder_one = CLIPTextModel.from_pretrained(
69
+ base_path,
70
+ subfolder="text_encoder",
71
+ torch_dtype=torch.float16,
72
+ )
73
+ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
74
+ base_path,
75
+ subfolder="text_encoder_2",
76
+ torch_dtype=torch.float16,
77
+ )
78
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
79
+ base_path,
80
+ subfolder="image_encoder",
81
+ torch_dtype=torch.float16,
82
+ )
83
+ vae = AutoencoderKL.from_pretrained(base_path,
84
+ subfolder="vae",
85
+ torch_dtype=torch.float16,
86
+ )
87
+
88
+ # "stabilityai/stable-diffusion-xl-base-1.0",
89
+ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
90
+ base_path,
91
+ subfolder="unet_encoder",
92
+ torch_dtype=torch.float16,
93
+ )
94
+
95
+ parsing_model = Parsing(0)
96
+ openpose_model = OpenPose(0)
97
+
98
+ UNet_Encoder.requires_grad_(False)
99
+ image_encoder.requires_grad_(False)
100
+ vae.requires_grad_(False)
101
+ unet.requires_grad_(False)
102
+ text_encoder_one.requires_grad_(False)
103
+ text_encoder_two.requires_grad_(False)
104
+ tensor_transfrom = transforms.Compose(
105
+ [
106
+ transforms.ToTensor(),
107
+ transforms.Normalize([0.5], [0.5]),
108
+ ]
109
+ )
110
+
111
+ pipe = TryonPipeline.from_pretrained(
112
+ base_path,
113
+ unet=unet,
114
+ vae=vae,
115
+ feature_extractor= CLIPImageProcessor(),
116
+ text_encoder = text_encoder_one,
117
+ text_encoder_2 = text_encoder_two,
118
+ tokenizer = tokenizer_one,
119
+ tokenizer_2 = tokenizer_two,
120
+ scheduler = noise_scheduler,
121
+ image_encoder=image_encoder,
122
+ torch_dtype=torch.float16,
123
+ )
124
+ pipe.unet_encoder = UNet_Encoder
125
+
126
+ @spaces.GPU
127
+ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed,category):
128
+ device = "cuda"
129
+
130
+ openpose_model.preprocessor.body_estimation.model.to(device)
131
+ pipe.to(device)
132
+ pipe.unet_encoder.to(device)
133
+
134
+ garm_img= garm_img.convert("RGB").resize((768,1024))
135
+ human_img_orig = dict["background"].convert("RGB")
136
+
137
+ if is_checked_crop:
138
+ width, height = human_img_orig.size
139
+ target_width = int(min(width, height * (3 / 4)))
140
+ target_height = int(min(height, width * (4 / 3)))
141
+ left = (width - target_width) / 2
142
+ top = (height - target_height) / 2
143
+ right = (width + target_width) / 2
144
+ bottom = (height + target_height) / 2
145
+ cropped_img = human_img_orig.crop((left, top, right, bottom))
146
+ crop_size = cropped_img.size
147
+ human_img = cropped_img.resize((768,1024))
148
+ else:
149
+ human_img = human_img_orig.resize((768,1024))
150
+
151
+
152
+ if is_checked:
153
+ keypoints = openpose_model(human_img.resize((384,512)))
154
+ model_parse, _ = parsing_model(human_img.resize((384,512)))
155
+ mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
156
+ mask = mask.resize((768,1024))
157
+ else:
158
+ mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
159
+ # mask = transforms.ToTensor()(mask)
160
+ # mask = mask.unsqueeze(0)
161
+ mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
162
+ mask_gray = to_pil_image((mask_gray+1.0)/2.0)
163
+
164
+
165
+ human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
166
+ human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
167
+
168
+
169
+
170
+ args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
171
+ # verbosity = getattr(args, "verbosity", None)
172
+ pose_img = args.func(args,human_img_arg)
173
+ pose_img = pose_img[:,:,::-1]
174
+ pose_img = Image.fromarray(pose_img).resize((768,1024))
175
+
176
+ with torch.no_grad():
177
+ # Extract the images
178
+ with torch.cuda.amp.autocast():
179
+ with torch.no_grad():
180
+ prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des
181
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
182
+ with torch.inference_mode():
183
+ (
184
+ prompt_embeds,
185
+ negative_prompt_embeds,
186
+ pooled_prompt_embeds,
187
+ negative_pooled_prompt_embeds,
188
+ ) = pipe.encode_prompt(
189
+ prompt,
190
+ num_images_per_prompt=1,
191
+ do_classifier_free_guidance=True,
192
+ negative_prompt=negative_prompt,
193
+ )
194
+
195
+ prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des
196
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
197
+ if not isinstance(prompt, List):
198
+ prompt = [prompt] * 1
199
+ if not isinstance(negative_prompt, List):
200
+ negative_prompt = [negative_prompt] * 1
201
+ with torch.inference_mode():
202
+ (
203
+ prompt_embeds_c,
204
+ _,
205
+ _,
206
+ _,
207
+ ) = pipe.encode_prompt(
208
+ prompt,
209
+ num_images_per_prompt=1,
210
+ do_classifier_free_guidance=False,
211
+ negative_prompt=negative_prompt,
212
+ )
213
+
214
+
215
+
216
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
217
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
218
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
219
+ images = pipe(
220
+ prompt_embeds=prompt_embeds.to(device,torch.float16),
221
+ negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
222
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
223
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
224
+ num_inference_steps=denoise_steps,
225
+ generator=generator,
226
+ strength = 1.0,
227
+ pose_img = pose_img.to(device,torch.float16),
228
+ text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
229
+ cloth = garm_tensor.to(device,torch.float16),
230
+ mask_image=mask,
231
+ image=human_img,
232
+ height=1024,
233
+ width=768,
234
+ ip_adapter_image = garm_img.resize((768,1024)),
235
+ guidance_scale=2.0,
236
+ )[0]
237
+
238
+ if is_checked_crop:
239
+ out_img = images[0].resize(crop_size)
240
+ human_img_orig.paste(out_img, (int(left), int(top)))
241
+ return human_img_orig, mask_gray
242
+ else:
243
+ return images[0], mask_gray
244
+ # return images[0], mask_gray
245
+
246
+ garm_list = os.listdir(os.path.join(example_path,"cloth"))
247
+ garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
248
+
249
+ human_list = os.listdir(os.path.join(example_path,"human"))
250
+ human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
251
+
252
+ human_ex_list = []
253
+ for ex_human in human_list_path:
254
+ ex_dict= {}
255
+ ex_dict['background'] = ex_human
256
+ ex_dict['layers'] = None
257
+ ex_dict['composite'] = None
258
+ human_ex_list.append(ex_dict)
259
+
260
+ ##default human
261
+
262
+
263
+ image_blocks = gr.Blocks().queue()
264
+ with image_blocks as demo:
265
+
266
+ ##文字標題所在
267
+
268
+ gr.Markdown("## Change Clothes AI - AI Clothes Changer Online")
269
+ gr.Markdown("Go to [Change Clothes AI](https://changeclothesai.online/) for Free Try-On! 🤗 .")
270
+ ##係數區塊
271
+ with gr.Column():
272
+ try_button = gr.Button(value="Run Change Clothes AI")
273
+ with gr.Accordion(label="Advanced Settings", open=False):
274
+ with gr.Row():
275
+ denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
276
+ seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
277
+
278
+ ##更衣區塊
279
+ with gr.Row():
280
+ with gr.Column():
281
+ imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
282
+ with gr.Row():
283
+ is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
284
+ with gr.Row():
285
+ category = gr.Dropdown(
286
+ choices=["upper_body", "lower_body", "dresses"],
287
+ label="Category",
288
+ value="upper_body"
289
+ )
290
+ with gr.Row():
291
+ is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
292
+
293
+ example = gr.Examples(
294
+ inputs=imgs,
295
+ examples_per_page=15,
296
+ examples=human_ex_list
297
+ )
298
+
299
+ with gr.Column():
300
+ garm_img = gr.Image(label="Garment", sources='upload', type="pil")
301
+ with gr.Row(elem_id="prompt-container"):
302
+ with gr.Row():
303
+ prompt = gr.Textbox(label="Description of garment", placeholder="Short Sleeve Round Neck T-shirts", show_label=True, elem_id="prompt")
304
+ example = gr.Examples(
305
+ inputs=garm_img,
306
+ examples_per_page=16,
307
+ examples=garm_list_path)
308
+ with gr.Column():
309
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
310
+ masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
311
+ with gr.Column():
312
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
313
+ image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
314
+
315
+ with gr.Row():
316
+ gr.Markdown("## Links")
317
+ gr.Markdown("###### [Image Describer](http://imagedescriber.online/)")
318
+ gr.Markdown("###### [Picture To Summary AI](https://picturetosummaryai.online/)")
319
+ gr.Markdown("###### [PS2 Filter AI](https://ps2filterai.online/)")
320
+ gr.Markdown("###### [Change Clothes AI](https://changeclothesai.online/)")
321
+ gr.Markdown("###### [Describe Image AI](https://describeimageai.online/)")
322
+
323
+
324
+ try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed, category], outputs=[image_out,masked_img], api_name='tryon')
325
+
326
+
327
+
328
+
329
+ image_blocks.launch()
330
+
app.py:Zone.Identifier ADDED
File without changes
apply_net.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates.
3
+
4
+ import argparse
5
+ import glob
6
+ import logging
7
+ import os
8
+ import sys
9
+ from typing import Any, ClassVar, Dict, List
10
+ import torch
11
+
12
+ from detectron2.config import CfgNode, get_cfg
13
+ from detectron2.data.detection_utils import read_image
14
+ from detectron2.engine.defaults import DefaultPredictor
15
+ from detectron2.structures.instances import Instances
16
+ from detectron2.utils.logger import setup_logger
17
+
18
+ from densepose import add_densepose_config
19
+ from densepose.structures import DensePoseChartPredictorOutput, DensePoseEmbeddingPredictorOutput
20
+ from densepose.utils.logger import verbosity_to_level
21
+ from densepose.vis.base import CompoundVisualizer
22
+ from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer
23
+ from densepose.vis.densepose_outputs_vertex import (
24
+ DensePoseOutputsTextureVisualizer,
25
+ DensePoseOutputsVertexVisualizer,
26
+ get_texture_atlases,
27
+ )
28
+ from densepose.vis.densepose_results import (
29
+ DensePoseResultsContourVisualizer,
30
+ DensePoseResultsFineSegmentationVisualizer,
31
+ DensePoseResultsUVisualizer,
32
+ DensePoseResultsVVisualizer,
33
+ )
34
+ from densepose.vis.densepose_results_textures import (
35
+ DensePoseResultsVisualizerWithTexture,
36
+ get_texture_atlas,
37
+ )
38
+ from densepose.vis.extractor import (
39
+ CompoundExtractor,
40
+ DensePoseOutputsExtractor,
41
+ DensePoseResultExtractor,
42
+ create_extractor,
43
+ )
44
+
45
+ DOC = """Apply Net - a tool to print / visualize DensePose results
46
+ """
47
+
48
+ LOGGER_NAME = "apply_net"
49
+ logger = logging.getLogger(LOGGER_NAME)
50
+
51
+ _ACTION_REGISTRY: Dict[str, "Action"] = {}
52
+
53
+
54
+ class Action:
55
+ @classmethod
56
+ def add_arguments(cls: type, parser: argparse.ArgumentParser):
57
+ parser.add_argument(
58
+ "-v",
59
+ "--verbosity",
60
+ action="count",
61
+ help="Verbose mode. Multiple -v options increase the verbosity.",
62
+ )
63
+
64
+
65
+ def register_action(cls: type):
66
+ """
67
+ Decorator for action classes to automate action registration
68
+ """
69
+ global _ACTION_REGISTRY
70
+ _ACTION_REGISTRY[cls.COMMAND] = cls
71
+ return cls
72
+
73
+
74
+ class InferenceAction(Action):
75
+ @classmethod
76
+ def add_arguments(cls: type, parser: argparse.ArgumentParser):
77
+ super(InferenceAction, cls).add_arguments(parser)
78
+ parser.add_argument("cfg", metavar="<config>", help="Config file")
79
+ parser.add_argument("model", metavar="<model>", help="Model file")
80
+ parser.add_argument(
81
+ "--opts",
82
+ help="Modify config options using the command-line 'KEY VALUE' pairs",
83
+ default=[],
84
+ nargs=argparse.REMAINDER,
85
+ )
86
+
87
+ @classmethod
88
+ def execute(cls: type, args: argparse.Namespace, human_img):
89
+ logger.info(f"Loading config from {args.cfg}")
90
+ opts = []
91
+ cfg = cls.setup_config(args.cfg, args.model, args, opts)
92
+ logger.info(f"Loading model from {args.model}")
93
+ predictor = DefaultPredictor(cfg)
94
+ # logger.info(f"Loading data from {args.input}")
95
+ # file_list = cls._get_input_file_list(args.input)
96
+ # if len(file_list) == 0:
97
+ # logger.warning(f"No input images for {args.input}")
98
+ # return
99
+ context = cls.create_context(args, cfg)
100
+ # for file_name in file_list:
101
+ # img = read_image(file_name, format="BGR") # predictor expects BGR image.
102
+ with torch.no_grad():
103
+ outputs = predictor(human_img)["instances"]
104
+ out_pose = cls.execute_on_outputs(context, {"image": human_img}, outputs)
105
+ cls.postexecute(context)
106
+ return out_pose
107
+
108
+ @classmethod
109
+ def setup_config(
110
+ cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
111
+ ):
112
+ cfg = get_cfg()
113
+ add_densepose_config(cfg)
114
+ cfg.merge_from_file(config_fpath)
115
+ cfg.merge_from_list(args.opts)
116
+ if opts:
117
+ cfg.merge_from_list(opts)
118
+ cfg.MODEL.WEIGHTS = model_fpath
119
+ cfg.freeze()
120
+ return cfg
121
+
122
+ @classmethod
123
+ def _get_input_file_list(cls: type, input_spec: str):
124
+ if os.path.isdir(input_spec):
125
+ file_list = [
126
+ os.path.join(input_spec, fname)
127
+ for fname in os.listdir(input_spec)
128
+ if os.path.isfile(os.path.join(input_spec, fname))
129
+ ]
130
+ elif os.path.isfile(input_spec):
131
+ file_list = [input_spec]
132
+ else:
133
+ file_list = glob.glob(input_spec)
134
+ return file_list
135
+
136
+
137
+ @register_action
138
+ class DumpAction(InferenceAction):
139
+ """
140
+ Dump action that outputs results to a pickle file
141
+ """
142
+
143
+ COMMAND: ClassVar[str] = "dump"
144
+
145
+ @classmethod
146
+ def add_parser(cls: type, subparsers: argparse._SubParsersAction):
147
+ parser = subparsers.add_parser(cls.COMMAND, help="Dump model outputs to a file.")
148
+ cls.add_arguments(parser)
149
+ parser.set_defaults(func=cls.execute)
150
+
151
+ @classmethod
152
+ def add_arguments(cls: type, parser: argparse.ArgumentParser):
153
+ super(DumpAction, cls).add_arguments(parser)
154
+ parser.add_argument(
155
+ "--output",
156
+ metavar="<dump_file>",
157
+ default="results.pkl",
158
+ help="File name to save dump to",
159
+ )
160
+
161
+ @classmethod
162
+ def execute_on_outputs(
163
+ cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
164
+ ):
165
+ image_fpath = entry["file_name"]
166
+ logger.info(f"Processing {image_fpath}")
167
+ result = {"file_name": image_fpath}
168
+ if outputs.has("scores"):
169
+ result["scores"] = outputs.get("scores").cpu()
170
+ if outputs.has("pred_boxes"):
171
+ result["pred_boxes_XYXY"] = outputs.get("pred_boxes").tensor.cpu()
172
+ if outputs.has("pred_densepose"):
173
+ if isinstance(outputs.pred_densepose, DensePoseChartPredictorOutput):
174
+ extractor = DensePoseResultExtractor()
175
+ elif isinstance(outputs.pred_densepose, DensePoseEmbeddingPredictorOutput):
176
+ extractor = DensePoseOutputsExtractor()
177
+ result["pred_densepose"] = extractor(outputs)[0]
178
+ context["results"].append(result)
179
+
180
+ @classmethod
181
+ def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode):
182
+ context = {"results": [], "out_fname": args.output}
183
+ return context
184
+
185
+ @classmethod
186
+ def postexecute(cls: type, context: Dict[str, Any]):
187
+ out_fname = context["out_fname"]
188
+ out_dir = os.path.dirname(out_fname)
189
+ if len(out_dir) > 0 and not os.path.exists(out_dir):
190
+ os.makedirs(out_dir)
191
+ with open(out_fname, "wb") as hFile:
192
+ torch.save(context["results"], hFile)
193
+ logger.info(f"Output saved to {out_fname}")
194
+
195
+
196
+ @register_action
197
+ class ShowAction(InferenceAction):
198
+ """
199
+ Show action that visualizes selected entries on an image
200
+ """
201
+
202
+ COMMAND: ClassVar[str] = "show"
203
+ VISUALIZERS: ClassVar[Dict[str, object]] = {
204
+ "dp_contour": DensePoseResultsContourVisualizer,
205
+ "dp_segm": DensePoseResultsFineSegmentationVisualizer,
206
+ "dp_u": DensePoseResultsUVisualizer,
207
+ "dp_v": DensePoseResultsVVisualizer,
208
+ "dp_iuv_texture": DensePoseResultsVisualizerWithTexture,
209
+ "dp_cse_texture": DensePoseOutputsTextureVisualizer,
210
+ "dp_vertex": DensePoseOutputsVertexVisualizer,
211
+ "bbox": ScoredBoundingBoxVisualizer,
212
+ }
213
+
214
+ @classmethod
215
+ def add_parser(cls: type, subparsers: argparse._SubParsersAction):
216
+ parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries")
217
+ cls.add_arguments(parser)
218
+ parser.set_defaults(func=cls.execute)
219
+
220
+ @classmethod
221
+ def add_arguments(cls: type, parser: argparse.ArgumentParser):
222
+ super(ShowAction, cls).add_arguments(parser)
223
+ parser.add_argument(
224
+ "visualizations",
225
+ metavar="<visualizations>",
226
+ help="Comma separated list of visualizations, possible values: "
227
+ "[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))),
228
+ )
229
+ parser.add_argument(
230
+ "--min_score",
231
+ metavar="<score>",
232
+ default=0.8,
233
+ type=float,
234
+ help="Minimum detection score to visualize",
235
+ )
236
+ parser.add_argument(
237
+ "--nms_thresh", metavar="<threshold>", default=None, type=float, help="NMS threshold"
238
+ )
239
+ parser.add_argument(
240
+ "--texture_atlas",
241
+ metavar="<texture_atlas>",
242
+ default=None,
243
+ help="Texture atlas file (for IUV texture transfer)",
244
+ )
245
+ parser.add_argument(
246
+ "--texture_atlases_map",
247
+ metavar="<texture_atlases_map>",
248
+ default=None,
249
+ help="JSON string of a dict containing texture atlas files for each mesh",
250
+ )
251
+ parser.add_argument(
252
+ "--output",
253
+ metavar="<image_file>",
254
+ default="outputres.png",
255
+ help="File name to save output to",
256
+ )
257
+
258
+ @classmethod
259
+ def setup_config(
260
+ cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
261
+ ):
262
+ opts.append("MODEL.ROI_HEADS.SCORE_THRESH_TEST")
263
+ opts.append(str(args.min_score))
264
+ if args.nms_thresh is not None:
265
+ opts.append("MODEL.ROI_HEADS.NMS_THRESH_TEST")
266
+ opts.append(str(args.nms_thresh))
267
+ cfg = super(ShowAction, cls).setup_config(config_fpath, model_fpath, args, opts)
268
+ return cfg
269
+
270
+ @classmethod
271
+ def execute_on_outputs(
272
+ cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
273
+ ):
274
+ import cv2
275
+ import numpy as np
276
+ visualizer = context["visualizer"]
277
+ extractor = context["extractor"]
278
+ # image_fpath = entry["file_name"]
279
+ # logger.info(f"Processing {image_fpath}")
280
+ image = cv2.cvtColor(entry["image"], cv2.COLOR_BGR2GRAY)
281
+ image = np.tile(image[:, :, np.newaxis], [1, 1, 3])
282
+ data = extractor(outputs)
283
+ image_vis = visualizer.visualize(image, data)
284
+
285
+ return image_vis
286
+ entry_idx = context["entry_idx"] + 1
287
+ out_fname = './image-densepose/' + image_fpath.split('/')[-1]
288
+ out_dir = './image-densepose'
289
+ out_dir = os.path.dirname(out_fname)
290
+ if len(out_dir) > 0 and not os.path.exists(out_dir):
291
+ os.makedirs(out_dir)
292
+ cv2.imwrite(out_fname, image_vis)
293
+ logger.info(f"Output saved to {out_fname}")
294
+ context["entry_idx"] += 1
295
+
296
+ @classmethod
297
+ def postexecute(cls: type, context: Dict[str, Any]):
298
+ pass
299
+ # python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/DressCode/upper_body/images dp_segm -v --opts MODEL.DEVICE cpu
300
+
301
+ @classmethod
302
+ def _get_out_fname(cls: type, entry_idx: int, fname_base: str):
303
+ base, ext = os.path.splitext(fname_base)
304
+ return base + ".{0:04d}".format(entry_idx) + ext
305
+
306
+ @classmethod
307
+ def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode) -> Dict[str, Any]:
308
+ vis_specs = args.visualizations.split(",")
309
+ visualizers = []
310
+ extractors = []
311
+ for vis_spec in vis_specs:
312
+ texture_atlas = get_texture_atlas(args.texture_atlas)
313
+ texture_atlases_dict = get_texture_atlases(args.texture_atlases_map)
314
+ vis = cls.VISUALIZERS[vis_spec](
315
+ cfg=cfg,
316
+ texture_atlas=texture_atlas,
317
+ texture_atlases_dict=texture_atlases_dict,
318
+ )
319
+ visualizers.append(vis)
320
+ extractor = create_extractor(vis)
321
+ extractors.append(extractor)
322
+ visualizer = CompoundVisualizer(visualizers)
323
+ extractor = CompoundExtractor(extractors)
324
+ context = {
325
+ "extractor": extractor,
326
+ "visualizer": visualizer,
327
+ "out_fname": args.output,
328
+ "entry_idx": 0,
329
+ }
330
+ return context
331
+
332
+
333
+ def create_argument_parser() -> argparse.ArgumentParser:
334
+ parser = argparse.ArgumentParser(
335
+ description=DOC,
336
+ formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120),
337
+ )
338
+ parser.set_defaults(func=lambda _: parser.print_help(sys.stdout))
339
+ subparsers = parser.add_subparsers(title="Actions")
340
+ for _, action in _ACTION_REGISTRY.items():
341
+ action.add_parser(subparsers)
342
+ return parser
343
+
344
+
345
+ def main():
346
+ parser = create_argument_parser()
347
+ args = parser.parse_args()
348
+ verbosity = getattr(args, "verbosity", None)
349
+ global logger
350
+ logger = setup_logger(name=LOGGER_NAME)
351
+ logger.setLevel(verbosity_to_level(verbosity))
352
+ args.func(args)
353
+
354
+
355
+ if __name__ == "__main__":
356
+ main()
357
+
358
+
359
+ # python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/Dresscode/dresses/humanonly dp_segm -v --opts MODEL.DEVICE cuda
apply_net.py:Zone.Identifier ADDED
File without changes
ckpt/densepose/model_final_162be9.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8a7382001b16e453bad95ca9dbc68ae8f2b839b304cf90eaf5c27fbdb4dae91
3
+ size 255757821
ckpt/densepose/model_final_162be9.pkl:Zone.Identifier ADDED
File without changes
ckpt/humanparsing/parsing_atr.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04c7d1d070d0e0ae943d86b18cb5aaaea9e278d97462e9cfb270cbbe4cd977f4
3
+ size 266859305
ckpt/humanparsing/parsing_atr.onnx:Zone.Identifier ADDED
File without changes
ckpt/humanparsing/parsing_lip.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8436e1dae96e2601c373d1ace29c8f0978b16357d9038c17a8ba756cca376dbc
3
+ size 266863411
ckpt/humanparsing/parsing_lip.onnx:Zone.Identifier ADDED
File without changes
ckpt/openpose/.DS_Store ADDED
Binary file (6.15 kB). View file
 
ckpt/openpose/.DS_Store:Zone.Identifier ADDED
File without changes
ckpt/openpose/ckpts/body_pose_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25a948c16078b0f08e236bda51a385d855ef4c153598947c28c0d47ed94bb746
3
+ size 209267595
ckpt/openpose/ckpts/body_pose_model.pth:Zone.Identifier ADDED
File without changes
configs/Base-DensePose-RCNN-FPN.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ VERSION: 2
2
+ MODEL:
3
+ META_ARCHITECTURE: "GeneralizedRCNN"
4
+ BACKBONE:
5
+ NAME: "build_resnet_fpn_backbone"
6
+ RESNETS:
7
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
8
+ FPN:
9
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
10
+ ANCHOR_GENERATOR:
11
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
12
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
13
+ RPN:
14
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
15
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
16
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
17
+ # Detectron1 uses 2000 proposals per-batch,
18
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
19
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
20
+ POST_NMS_TOPK_TRAIN: 1000
21
+ POST_NMS_TOPK_TEST: 1000
22
+
23
+ DENSEPOSE_ON: True
24
+ ROI_HEADS:
25
+ NAME: "DensePoseROIHeads"
26
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
27
+ NUM_CLASSES: 1
28
+ ROI_BOX_HEAD:
29
+ NAME: "FastRCNNConvFCHead"
30
+ NUM_FC: 2
31
+ POOLER_RESOLUTION: 7
32
+ POOLER_SAMPLING_RATIO: 2
33
+ POOLER_TYPE: "ROIAlign"
34
+ ROI_DENSEPOSE_HEAD:
35
+ NAME: "DensePoseV1ConvXHead"
36
+ POOLER_TYPE: "ROIAlign"
37
+ NUM_COARSE_SEGM_CHANNELS: 2
38
+ DATASETS:
39
+ TRAIN: ("densepose_coco_2014_train", "densepose_coco_2014_valminusminival")
40
+ TEST: ("densepose_coco_2014_minival",)
41
+ SOLVER:
42
+ IMS_PER_BATCH: 16
43
+ BASE_LR: 0.01
44
+ STEPS: (60000, 80000)
45
+ MAX_ITER: 90000
46
+ WARMUP_FACTOR: 0.1
47
+ INPUT:
48
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
configs/Base-DensePose-RCNN-FPN.yaml:Zone.Identifier ADDED
File without changes
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dYBMemi9xOUFR0w"
4
+ BACKBONE:
5
+ NAME: "build_hrfpn_backbone"
6
+ RPN:
7
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
+ ROI_HEADS:
9
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
13
+ CLIP_GRADIENTS:
14
+ ENABLED: True
15
+ CLIP_TYPE: "norm"
16
+ BASE_LR: 0.03
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33ck0gvo5jfoWBOPo"
4
+ BACKBONE:
5
+ NAME: "build_hrfpn_backbone"
6
+ RPN:
7
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
+ ROI_HEADS:
9
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
+ HRNET:
11
+ STAGE2:
12
+ NUM_CHANNELS: [40, 80]
13
+ STAGE3:
14
+ NUM_CHANNELS: [40, 80, 160]
15
+ STAGE4:
16
+ NUM_CHANNELS: [40, 80, 160, 320]
17
+ SOLVER:
18
+ MAX_ITER: 130000
19
+ STEPS: (100000, 120000)
20
+ CLIP_GRADIENTS:
21
+ ENABLED: True
22
+ CLIP_TYPE: "norm"
23
+ BASE_LR: 0.03
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dKvqI6pBZlifgJk"
4
+ BACKBONE:
5
+ NAME: "build_hrfpn_backbone"
6
+ RPN:
7
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
+ ROI_HEADS:
9
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
+ HRNET:
11
+ STAGE2:
12
+ NUM_CHANNELS: [48, 96]
13
+ STAGE3:
14
+ NUM_CHANNELS: [48, 96, 192]
15
+ STAGE4:
16
+ NUM_CHANNELS: [48, 96, 192, 384]
17
+ SOLVER:
18
+ MAX_ITER: 130000
19
+ STEPS: (100000, 120000)
20
+ CLIP_GRADIENTS:
21
+ ENABLED: True
22
+ CLIP_TYPE: "norm"
23
+ BASE_LR: 0.03
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/cse/Base-DensePose-RCNN-FPN-Human.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ ROI_DENSEPOSE_HEAD:
4
+ CSE:
5
+ EMBEDDERS:
6
+ "smpl_27554":
7
+ TYPE: vertex_feature
8
+ NUM_VERTICES: 27554
9
+ FEATURE_DIM: 256
10
+ FEATURES_TRAINABLE: False
11
+ IS_TRAINABLE: True
12
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_smpl_27554_256.pkl"
13
+ DATASETS:
14
+ TRAIN:
15
+ - "densepose_coco_2014_train_cse"
16
+ - "densepose_coco_2014_valminusminival_cse"
17
+ TEST:
18
+ - "densepose_coco_2014_minival_cse"
19
+ CLASS_TO_MESH_NAME_MAPPING:
20
+ "0": "smpl_27554"
configs/cse/Base-DensePose-RCNN-FPN-Human.yaml:Zone.Identifier ADDED
File without changes
configs/cse/Base-DensePose-RCNN-FPN.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ VERSION: 2
2
+ MODEL:
3
+ META_ARCHITECTURE: "GeneralizedRCNN"
4
+ BACKBONE:
5
+ NAME: "build_resnet_fpn_backbone"
6
+ RESNETS:
7
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
8
+ FPN:
9
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
10
+ ANCHOR_GENERATOR:
11
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
12
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
13
+ RPN:
14
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
15
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
16
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
17
+ # Detectron1 uses 2000 proposals per-batch,
18
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
19
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
20
+ POST_NMS_TOPK_TRAIN: 1000
21
+ POST_NMS_TOPK_TEST: 1000
22
+
23
+ DENSEPOSE_ON: True
24
+ ROI_HEADS:
25
+ NAME: "DensePoseROIHeads"
26
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
27
+ NUM_CLASSES: 1
28
+ ROI_BOX_HEAD:
29
+ NAME: "FastRCNNConvFCHead"
30
+ NUM_FC: 2
31
+ POOLER_RESOLUTION: 7
32
+ POOLER_SAMPLING_RATIO: 2
33
+ POOLER_TYPE: "ROIAlign"
34
+ ROI_DENSEPOSE_HEAD:
35
+ NAME: "DensePoseV1ConvXHead"
36
+ POOLER_TYPE: "ROIAlign"
37
+ NUM_COARSE_SEGM_CHANNELS: 2
38
+ PREDICTOR_NAME: "DensePoseEmbeddingPredictor"
39
+ LOSS_NAME: "DensePoseCseLoss"
40
+ CSE:
41
+ # embedding loss, possible values:
42
+ # - "EmbeddingLoss"
43
+ # - "SoftEmbeddingLoss"
44
+ EMBED_LOSS_NAME: "EmbeddingLoss"
45
+ SOLVER:
46
+ IMS_PER_BATCH: 16
47
+ BASE_LR: 0.01
48
+ STEPS: (60000, 80000)
49
+ MAX_ITER: 90000
50
+ WARMUP_FACTOR: 0.1
51
+ CLIP_GRADIENTS:
52
+ CLIP_TYPE: norm
53
+ CLIP_VALUE: 1.0
54
+ ENABLED: true
55
+ NORM_TYPE: 2.0
56
+ INPUT:
57
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
58
+ DENSEPOSE_EVALUATION:
59
+ TYPE: cse
60
+ STORAGE: file
configs/cse/Base-DensePose-RCNN-FPN.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "EmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseV1ConvXHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "EmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseV1ConvXHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "EmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseV1ConvXHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "EmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 1
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ EMBEDDERS:
16
+ "cat_7466":
17
+ TYPE: vertex_feature
18
+ NUM_VERTICES: 7466
19
+ FEATURE_DIM: 256
20
+ FEATURES_TRAINABLE: False
21
+ IS_TRAINABLE: True
22
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
23
+ "dog_7466":
24
+ TYPE: vertex_feature
25
+ NUM_VERTICES: 7466
26
+ FEATURE_DIM: 256
27
+ FEATURES_TRAINABLE: False
28
+ IS_TRAINABLE: True
29
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
30
+ "sheep_5004":
31
+ TYPE: vertex_feature
32
+ NUM_VERTICES: 5004
33
+ FEATURE_DIM: 256
34
+ FEATURES_TRAINABLE: False
35
+ IS_TRAINABLE: True
36
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
+ "horse_5004":
38
+ TYPE: vertex_feature
39
+ NUM_VERTICES: 5004
40
+ FEATURE_DIM: 256
41
+ FEATURES_TRAINABLE: False
42
+ IS_TRAINABLE: True
43
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
+ "zebra_5002":
45
+ TYPE: vertex_feature
46
+ NUM_VERTICES: 5002
47
+ FEATURE_DIM: 256
48
+ FEATURES_TRAINABLE: False
49
+ IS_TRAINABLE: True
50
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
+ "giraffe_5002":
52
+ TYPE: vertex_feature
53
+ NUM_VERTICES: 5002
54
+ FEATURE_DIM: 256
55
+ FEATURES_TRAINABLE: False
56
+ IS_TRAINABLE: True
57
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
+ "elephant_5002":
59
+ TYPE: vertex_feature
60
+ NUM_VERTICES: 5002
61
+ FEATURE_DIM: 256
62
+ FEATURES_TRAINABLE: False
63
+ IS_TRAINABLE: True
64
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
+ "cow_5002":
66
+ TYPE: vertex_feature
67
+ NUM_VERTICES: 5002
68
+ FEATURE_DIM: 256
69
+ FEATURES_TRAINABLE: False
70
+ IS_TRAINABLE: True
71
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
+ "bear_4936":
73
+ TYPE: vertex_feature
74
+ NUM_VERTICES: 4936
75
+ FEATURE_DIM: 256
76
+ FEATURES_TRAINABLE: False
77
+ IS_TRAINABLE: True
78
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
+ DATASETS:
80
+ TRAIN:
81
+ - "densepose_lvis_v1_ds2_train_v1"
82
+ TEST:
83
+ - "densepose_lvis_v1_ds2_val_v1"
84
+ WHITELISTED_CATEGORIES:
85
+ "densepose_lvis_v1_ds2_train_v1":
86
+ - 943 # sheep
87
+ - 1202 # zebra
88
+ - 569 # horse
89
+ - 496 # giraffe
90
+ - 422 # elephant
91
+ - 80 # cow
92
+ - 76 # bear
93
+ - 225 # cat
94
+ - 378 # dog
95
+ "densepose_lvis_v1_ds2_val_v1":
96
+ - 943 # sheep
97
+ - 1202 # zebra
98
+ - 569 # horse
99
+ - 496 # giraffe
100
+ - 422 # elephant
101
+ - 80 # cow
102
+ - 76 # bear
103
+ - 225 # cat
104
+ - 378 # dog
105
+ CATEGORY_MAPS:
106
+ "densepose_lvis_v1_ds2_train_v1":
107
+ "1202": 943 # zebra -> sheep
108
+ "569": 943 # horse -> sheep
109
+ "496": 943 # giraffe -> sheep
110
+ "422": 943 # elephant -> sheep
111
+ "80": 943 # cow -> sheep
112
+ "76": 943 # bear -> sheep
113
+ "225": 943 # cat -> sheep
114
+ "378": 943 # dog -> sheep
115
+ "densepose_lvis_v1_ds2_val_v1":
116
+ "1202": 943 # zebra -> sheep
117
+ "569": 943 # horse -> sheep
118
+ "496": 943 # giraffe -> sheep
119
+ "422": 943 # elephant -> sheep
120
+ "80": 943 # cow -> sheep
121
+ "76": 943 # bear -> sheep
122
+ "225": 943 # cat -> sheep
123
+ "378": 943 # dog -> sheep
124
+ CLASS_TO_MESH_NAME_MAPPING:
125
+ # Note: different classes are mapped to a single class
126
+ # mesh is chosen based on GT data, so this is just some
127
+ # value which has no particular meaning
128
+ "0": "sheep_5004"
129
+ SOLVER:
130
+ MAX_ITER: 16000
131
+ STEPS: (12000, 14000)
132
+ DENSEPOSE_EVALUATION:
133
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 1
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ EMBEDDERS:
16
+ "cat_5001":
17
+ TYPE: vertex_feature
18
+ NUM_VERTICES: 5001
19
+ FEATURE_DIM: 256
20
+ FEATURES_TRAINABLE: False
21
+ IS_TRAINABLE: True
22
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_5001_256.pkl"
23
+ "dog_5002":
24
+ TYPE: vertex_feature
25
+ NUM_VERTICES: 5002
26
+ FEATURE_DIM: 256
27
+ FEATURES_TRAINABLE: False
28
+ IS_TRAINABLE: True
29
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_5002_256.pkl"
30
+ "sheep_5004":
31
+ TYPE: vertex_feature
32
+ NUM_VERTICES: 5004
33
+ FEATURE_DIM: 256
34
+ FEATURES_TRAINABLE: False
35
+ IS_TRAINABLE: True
36
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
+ "horse_5004":
38
+ TYPE: vertex_feature
39
+ NUM_VERTICES: 5004
40
+ FEATURE_DIM: 256
41
+ FEATURES_TRAINABLE: False
42
+ IS_TRAINABLE: True
43
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
+ "zebra_5002":
45
+ TYPE: vertex_feature
46
+ NUM_VERTICES: 5002
47
+ FEATURE_DIM: 256
48
+ FEATURES_TRAINABLE: False
49
+ IS_TRAINABLE: True
50
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
+ "giraffe_5002":
52
+ TYPE: vertex_feature
53
+ NUM_VERTICES: 5002
54
+ FEATURE_DIM: 256
55
+ FEATURES_TRAINABLE: False
56
+ IS_TRAINABLE: True
57
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
+ "elephant_5002":
59
+ TYPE: vertex_feature
60
+ NUM_VERTICES: 5002
61
+ FEATURE_DIM: 256
62
+ FEATURES_TRAINABLE: False
63
+ IS_TRAINABLE: True
64
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
+ "cow_5002":
66
+ TYPE: vertex_feature
67
+ NUM_VERTICES: 5002
68
+ FEATURE_DIM: 256
69
+ FEATURES_TRAINABLE: False
70
+ IS_TRAINABLE: True
71
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
+ "bear_4936":
73
+ TYPE: vertex_feature
74
+ NUM_VERTICES: 4936
75
+ FEATURE_DIM: 256
76
+ FEATURES_TRAINABLE: False
77
+ IS_TRAINABLE: True
78
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
+ DATASETS:
80
+ TRAIN:
81
+ - "densepose_lvis_v1_ds1_train_v1"
82
+ TEST:
83
+ - "densepose_lvis_v1_ds1_val_v1"
84
+ WHITELISTED_CATEGORIES:
85
+ "densepose_lvis_v1_ds1_train_v1":
86
+ - 943 # sheep
87
+ - 1202 # zebra
88
+ - 569 # horse
89
+ - 496 # giraffe
90
+ - 422 # elephant
91
+ - 80 # cow
92
+ - 76 # bear
93
+ - 225 # cat
94
+ - 378 # dog
95
+ "densepose_lvis_v1_ds1_val_v1":
96
+ - 943 # sheep
97
+ - 1202 # zebra
98
+ - 569 # horse
99
+ - 496 # giraffe
100
+ - 422 # elephant
101
+ - 80 # cow
102
+ - 76 # bear
103
+ - 225 # cat
104
+ - 378 # dog
105
+ CATEGORY_MAPS:
106
+ "densepose_lvis_v1_ds1_train_v1":
107
+ "1202": 943 # zebra -> sheep
108
+ "569": 943 # horse -> sheep
109
+ "496": 943 # giraffe -> sheep
110
+ "422": 943 # elephant -> sheep
111
+ "80": 943 # cow -> sheep
112
+ "76": 943 # bear -> sheep
113
+ "225": 943 # cat -> sheep
114
+ "378": 943 # dog -> sheep
115
+ "densepose_lvis_v1_ds1_val_v1":
116
+ "1202": 943 # zebra -> sheep
117
+ "569": 943 # horse -> sheep
118
+ "496": 943 # giraffe -> sheep
119
+ "422": 943 # elephant -> sheep
120
+ "80": 943 # cow -> sheep
121
+ "76": 943 # bear -> sheep
122
+ "225": 943 # cat -> sheep
123
+ "378": 943 # dog -> sheep
124
+ CLASS_TO_MESH_NAME_MAPPING:
125
+ # Note: different classes are mapped to a single class
126
+ # mesh is chosen based on GT data, so this is just some
127
+ # value which has no particular meaning
128
+ "0": "sheep_5004"
129
+ SOLVER:
130
+ MAX_ITER: 4000
131
+ STEPS: (3000, 3500)
132
+ DENSEPOSE_EVALUATION:
133
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml:Zone.Identifier ADDED
File without changes
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/270668502/model_final_21b1d2.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 9
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ EMBEDDERS:
16
+ "cat_7466":
17
+ TYPE: vertex_feature
18
+ NUM_VERTICES: 7466
19
+ FEATURE_DIM: 256
20
+ FEATURES_TRAINABLE: False
21
+ IS_TRAINABLE: True
22
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
23
+ "dog_7466":
24
+ TYPE: vertex_feature
25
+ NUM_VERTICES: 7466
26
+ FEATURE_DIM: 256
27
+ FEATURES_TRAINABLE: False
28
+ IS_TRAINABLE: True
29
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
30
+ "sheep_5004":
31
+ TYPE: vertex_feature
32
+ NUM_VERTICES: 5004
33
+ FEATURE_DIM: 256
34
+ FEATURES_TRAINABLE: False
35
+ IS_TRAINABLE: True
36
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
+ "horse_5004":
38
+ TYPE: vertex_feature
39
+ NUM_VERTICES: 5004
40
+ FEATURE_DIM: 256
41
+ FEATURES_TRAINABLE: False
42
+ IS_TRAINABLE: True
43
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
+ "zebra_5002":
45
+ TYPE: vertex_feature
46
+ NUM_VERTICES: 5002
47
+ FEATURE_DIM: 256
48
+ FEATURES_TRAINABLE: False
49
+ IS_TRAINABLE: True
50
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
+ "giraffe_5002":
52
+ TYPE: vertex_feature
53
+ NUM_VERTICES: 5002
54
+ FEATURE_DIM: 256
55
+ FEATURES_TRAINABLE: False
56
+ IS_TRAINABLE: True
57
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
+ "elephant_5002":
59
+ TYPE: vertex_feature
60
+ NUM_VERTICES: 5002
61
+ FEATURE_DIM: 256
62
+ FEATURES_TRAINABLE: False
63
+ IS_TRAINABLE: True
64
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
+ "cow_5002":
66
+ TYPE: vertex_feature
67
+ NUM_VERTICES: 5002
68
+ FEATURE_DIM: 256
69
+ FEATURES_TRAINABLE: False
70
+ IS_TRAINABLE: True
71
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
+ "bear_4936":
73
+ TYPE: vertex_feature
74
+ NUM_VERTICES: 4936
75
+ FEATURE_DIM: 256
76
+ FEATURES_TRAINABLE: False
77
+ IS_TRAINABLE: True
78
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
+ DATASETS:
80
+ TRAIN:
81
+ - "densepose_lvis_v1_ds2_train_v1"
82
+ TEST:
83
+ - "densepose_lvis_v1_ds2_val_v1"
84
+ WHITELISTED_CATEGORIES:
85
+ "densepose_lvis_v1_ds2_train_v1":
86
+ - 943 # sheep
87
+ - 1202 # zebra
88
+ - 569 # horse
89
+ - 496 # giraffe
90
+ - 422 # elephant
91
+ - 80 # cow
92
+ - 76 # bear
93
+ - 225 # cat
94
+ - 378 # dog
95
+ "densepose_lvis_v1_ds2_val_v1":
96
+ - 943 # sheep
97
+ - 1202 # zebra
98
+ - 569 # horse
99
+ - 496 # giraffe
100
+ - 422 # elephant
101
+ - 80 # cow
102
+ - 76 # bear
103
+ - 225 # cat
104
+ - 378 # dog
105
+ CLASS_TO_MESH_NAME_MAPPING:
106
+ "0": "bear_4936"
107
+ "1": "cow_5002"
108
+ "2": "cat_7466"
109
+ "3": "dog_7466"
110
+ "4": "elephant_5002"
111
+ "5": "giraffe_5002"
112
+ "6": "horse_5004"
113
+ "7": "sheep_5004"
114
+ "8": "zebra_5002"
115
+ SOLVER:
116
+ MAX_ITER: 16000
117
+ STEPS: (12000, 14000)
118
+ DENSEPOSE_EVALUATION:
119
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml:Zone.Identifier ADDED
File without changes