Inosen-Infinity's picture
Group input and output fields into containers
1fa9f2a verified
import streamlit as st
import torch
import torch.nn.functional as F
import pandas as pd
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
device = 'cpu'
@st.cache_resource
def get_model_and_tokenizer():
model_name = "FacebookAI/roberta-base"
num_labels = 157
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
chkp = torch.load("arxiv_roberta_final.pt", map_location=device)
model.load_state_dict(chkp['model'])
return model, tokenizer
@st.cache_data
def get_categories():
categories = load_dataset("TimSchopf/arxiv_categories", "arxiv_category_descriptions")
cat2id = dict((cat, id) for id, cat in enumerate(categories['arxiv_category_descriptions']['tag']))
id2cat = categories['arxiv_category_descriptions']['tag']
names = categories['arxiv_category_descriptions']['name']
return cat2id, id2cat, names
model, tokenizer = get_model_and_tokenizer()
cat2id, id2cat, cat_names = get_categories()
@torch.no_grad
def predict_and_decode(model, title='', abstract=''):
model.eval()
inputs = tokenizer(title, abstract, return_tensors='pt', truncation=True, max_length=512).to(device)
logits = model(**inputs)['logits'][0].cpu()
df = pd.DataFrame([
(id2cat[cat_id], cat_names[cat_id], prob.item())
for cat_id, prob in enumerate(F.sigmoid(logits))
], columns=("tag", "name", "probability"))
df.sort_values(by="probability", ascending=False, inplace=True)
return df.reset_index(drop=True)
st.header("Paper Category Classifier")
st.text("Input a title and/or an abstract of a scientific paper, and get classification according to arxiv.org categories")
input_container = st.container(border=True)
with input_container:
title_default = "Attention Is All You Need"
abstract_default = (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks "
"in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through "
"an attention mechanism. We propose a new simple network architecture, the Transformer..."
)
line_height = 34
n_lines = 10
title = st.text_input("Paper title", value=title_default, help="Type in paper's title")
abstract = st.text_area("Paper abstract", value=abstract_default, height=line_height*n_lines, help="Type in paper's abstract")
if title or abstract:
result = predict_and_decode(model, title=title, abstract=abstract)
main_cnt = st.container(border=True)
with main_cnt:
st.markdown("#### Top category")
st.markdown(f"**{result.tag[0]}** -- {result.name[0]}")
st.markdown(f"Probability: {result.probability[0]*100:.2f}%")
rest_cnt = st.container(border=True)
with rest_cnt:
threshold = 0.55
st.text("Other top categories:")
max_len = min(max(1, sum(result.iloc[1:].probability > threshold)), 5)
def format_p(example):
example.probability = f"{example.probability * 100 :.2f}%"
return example
st.table(result.iloc[1:1 + max_len].apply(format_p, axis=1))
else:
st.warning("Type a title and/or an abstract to get started!")