jfaustin commited on
Commit
216492b
·
1 Parent(s): 90a13ac

prettify columns

Browse files
folding_studio_demo/app.py CHANGED
@@ -8,7 +8,7 @@ from gradio_molecule3d import Molecule3D
8
  import pandas as pd
9
 
10
  from folding_studio_demo.predict import predict
11
- from folding_studio_demo.correlate import fake_predict_and_correlate, COLUMNS
12
 
13
  logger = logging.getLogger(__name__)
14
 
@@ -144,12 +144,26 @@ def model_comparison(api_key: str) -> None:
144
 
145
 
146
  def create_correlation_tab():
147
- gr.Markdown("# Upload binding affinity data")
148
  spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv")
 
 
 
 
 
 
 
 
149
  with gr.Row():
150
- csv_file = gr.File(label="Upload CSV file", file_types=[".csv"])
151
- with gr.Row():
152
- dataframe = gr.Dataframe(label="Binding Affinity Data")
 
 
 
 
 
 
153
 
154
  gr.Markdown("# Prediction and correlation")
155
  with gr.Row():
@@ -162,13 +176,8 @@ def create_correlation_tab():
162
  correlation_ranking_plot = gr.Plot(label="Correlation ranking")
163
  correlation_plot = gr.Plot(label="Correlation with binding affinity")
164
 
165
- csv_file.change(
166
- fn=lambda file: spr_data_with_scores.drop(columns=COLUMNS) if file else None,
167
- inputs=csv_file,
168
- outputs=dataframe
169
- )
170
  fake_predict_btn.click(
171
- fn=lambda x: fake_predict_and_correlate(spr_data_with_scores, COLUMNS),
172
  inputs=None,
173
  outputs=[prediction_dataframe, correlation_ranking_plot, correlation_plot]
174
  )
 
8
  import pandas as pd
9
 
10
  from folding_studio_demo.predict import predict
11
+ from folding_studio_demo.correlate import fake_predict_and_correlate, SCORE_COLUMNS
12
 
13
  logger = logging.getLogger(__name__)
14
 
 
144
 
145
 
146
  def create_correlation_tab():
147
+ gr.Markdown("# Correlation with experimental binding affinity data")
148
  spr_data_with_scores = pd.read_csv("spr_af_scores_mapped.csv")
149
+ prettified_columns = {
150
+ "antibody_name": "Antibody Name",
151
+ "KD (nM)": "KD (nM)",
152
+ "antibody_vh_sequence": "Antibody VH Sequence",
153
+ "antibody_vl_sequence": "Antibody VL Sequence",
154
+ "antigen_sequence": "Antigen Sequence"
155
+ }
156
+ spr_data_with_scores = spr_data_with_scores.rename(columns=prettified_columns)
157
  with gr.Row():
158
+ columns = [
159
+ "Antibody Name",
160
+ "KD (nM)",
161
+ "Antibody VH Sequence",
162
+ "Antibody VL Sequence",
163
+ "Antigen Sequence"
164
+ ]
165
+ # Display dataframe with floating point values rounded to 2 decimal places
166
+ spr_data = gr.DataFrame(value=spr_data_with_scores[columns].round(2), label="Experimental Antibody-Antigen Binding Affinity Data")
167
 
168
  gr.Markdown("# Prediction and correlation")
169
  with gr.Row():
 
176
  correlation_ranking_plot = gr.Plot(label="Correlation ranking")
177
  correlation_plot = gr.Plot(label="Correlation with binding affinity")
178
 
 
 
 
 
 
179
  fake_predict_btn.click(
180
+ fn=lambda x: fake_predict_and_correlate(spr_data_with_scores, SCORE_COLUMNS),
181
  inputs=None,
182
  outputs=[prediction_dataframe, correlation_ranking_plot, correlation_plot]
183
  )
folding_studio_demo/correlate.py CHANGED
@@ -6,7 +6,7 @@ from scipy.stats import spearmanr
6
 
7
  logger = logging.getLogger(__name__)
8
 
9
- COLUMNS = [
10
  "confidence_score_boltz",
11
  "ptm_boltz",
12
  "iptm_boltz",
@@ -87,4 +87,4 @@ def fake_predict_and_correlate(spr_data_with_scores: pd.DataFrame, score_cols: l
87
  cols_to_show = [kd_col]
88
  cols_to_show.extend(score_cols)
89
 
90
- return spr_data_with_scores[cols_to_show], corr_ranking_plot, corr_plot
 
6
 
7
  logger = logging.getLogger(__name__)
8
 
9
+ SCORE_COLUMNS = [
10
  "confidence_score_boltz",
11
  "ptm_boltz",
12
  "iptm_boltz",
 
87
  cols_to_show = [kd_col]
88
  cols_to_show.extend(score_cols)
89
 
90
+ return spr_data_with_scores[cols_to_show].round(2), corr_ranking_plot, corr_plot