Benjamin Consolvo commited on
Commit
5faa415
Β·
1 Parent(s): 6c62682

add gift lfs tracking for images

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +28 -50
  3. images/hf_vacaigent.png +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ images/hf_vacaigent.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -7,17 +7,18 @@ sdk: streamlit
7
  sdk_version: 1.44.1
8
  app_file: app.py
9
  pinned: false
10
- license: apache-2.0
11
  short_description: Let AI agents plan your next vacation!
12
  ---
13
 
14
  # πŸ–οΈ VacAIgent: Streamlit-Integrated AI Crew for Trip Planning
15
 
16
- _Forked and enhanced from the_ [_crewAI examples repository_](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner)
17
 
18
- ## Introduction
 
 
19
 
20
- VacAIgent leverages the CrewAI framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently, now with an added layer of interactivity and accessibility through Streamlit.
21
 
22
  **Check out the video below for code walkthrough** πŸ‘‡
23
 
@@ -29,28 +30,25 @@ VacAIgent leverages the CrewAI framework to automate and enhance the trip planni
29
 
30
  ## CrewAI Framework
31
 
32
- CrewAI simplifies the orchestration of role-playing AI agents. In VacAIgent, these agents collaboratively decide on cities and craft a complete itinerary for your trip based on specified preferences, all accessible via a streamlined Streamlit user interface.
33
-
34
- ## Streamlit Interface
35
 
36
- The introduction of [Streamlit](https://streamlit.io/) transforms this application into an interactive web app, allowing users to easily input their preferences and receive tailored travel plans.
37
 
38
  ## Running the Application
39
 
40
  To experience the VacAIgent app:
41
 
42
  ### Pre-Requisites
43
- 1. Install and Configure **git** on your machine
44
- 2. Get the API key from **scrapinagent.com** from scrapinagent [Click Here to Signup](https://scrapingant.com/)
45
- 3. Get the API from **SERPER API** from serper [Click here to Signup]( https://serper.dev/)
 
46
 
47
  ### Deploy Trip Planner
48
 
49
  #### Step 1
50
  ```sh
51
- git clone https://github.com/intel-sandbox/trip_planner_agent
52
  ```
53
- * *Please make sure git is installed*
54
 
55
  #### Step 2
56
 
@@ -59,9 +57,10 @@ Insall Dependencies
59
  pip install -r requirements.txt
60
  ```
61
  #### Step 3
 
62
 
63
  ```sh
64
- cd trip_planner_agent
65
  ```
66
 
67
  create `.streamlit/secrets.toml` file and Update **Credentials**
@@ -71,52 +70,35 @@ create `.streamlit/secrets.toml` file and Update **Credentials**
71
  SERPER_API_KEY=""
72
  SCRAPINGANT_API_KEY=""
73
  OPENAI_API_KEY=""
74
- MODEL_ID=""
75
- MODEL_BASE_URL=""
 
76
  ```
 
 
77
  #### Step 4
78
 
79
  Run the application
80
 
81
  ```sh
82
- streamlit run streamlit_app.py
83
  ```
84
 
85
- Your application should be up and running
86
 
87
- β˜… **Disclaimer**: The application uses GPT-4 by default. Ensure you have access to OpenAI's API and be aware of the associated costs.
88
 
89
  ## Details & Explanation
90
 
91
- - **Streamlit UI**: The Streamlit interface is implemented in `streamlit_app.py`, where users can input their trip details.
92
  - **Components**:
93
- - `./trip_tasks.py`: Contains task prompts for the agents.
94
- - `./trip_agents.py`: Manages the creation of agents.
95
- - `./tools directory`: Houses tool classes used by agents.
96
- - `./streamlit_app.py`: The heart of the Streamlit app.
97
-
98
- ## Using GPT 3.5
99
-
100
- To switch from GPT-4 to GPT-3.5, pass the llm argument in the agent constructor:
101
-
102
- ```python
103
- from langchain.chat_models import ChatOpenAI
104
-
105
- llm = ChatOpenAI(model='gpt-3.5-turbo') # Loading gpt-3.5-turbo (see more OpenAI models at https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4)
106
-
107
- class TripAgents:
108
- # ... existing methods
109
 
110
- def local_expert(self):
111
- return Agent(
112
- role='Local Expert',
113
- goal='Provide insights about the selected city',
114
- tools=[SearchTools.search_internet, BrowserTools.scrape_and_summarize_website],
115
- llm=llm,
116
- verbose=True
117
- )
118
 
119
- ```
120
 
121
  ## Using Local Models with Ollama
122
 
@@ -157,8 +139,4 @@ class TripAgents:
157
 
158
  ## License
159
 
160
- VacAIgent is open-sourced under the MIT License.
161
-
162
-
163
-
164
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
7
  sdk_version: 1.44.1
8
  app_file: app.py
9
  pinned: false
10
+ license: mit
11
  short_description: Let AI agents plan your next vacation!
12
  ---
13
 
14
  # πŸ–οΈ VacAIgent: Streamlit-Integrated AI Crew for Trip Planning
15
 
16
+ VacAIgent leverages the CrewAI framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently.
17
 
18
+ _Forked and enhanced from the_ [_crewAI examples repository_](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner). You can find the application hosted on Hugging Face Spaces here:
19
+
20
+ [![](images/hf_vacaigent.png)](https://huggingface.co/spaces/Intel/vacaigent)
21
 
 
22
 
23
  **Check out the video below for code walkthrough** πŸ‘‡
24
 
 
30
 
31
  ## CrewAI Framework
32
 
33
+ CrewAI simplifies the orchestration of role-playing AI agents. In VacAIgent, these agents collaboratively decide on cities and craft a complete itinerary for your trip based on specified preferences, all accessible via a Streamlit user interface.
 
 
34
 
 
35
 
36
  ## Running the Application
37
 
38
  To experience the VacAIgent app:
39
 
40
  ### Pre-Requisites
41
+ 1. Get the API key from **scrapinagent.com** from [scrapinagent](https://scrapingant.com/)
42
+ 2. Get the API from **SERPER API** from [serper]( https://serper.dev/)
43
+ 3. Bring your OpenAI compatible API key
44
+ 4. Bring your model endpoint URL and LLM model ID that you want to use
45
 
46
  ### Deploy Trip Planner
47
 
48
  #### Step 1
49
  ```sh
50
+ git clone https://github.com/opea-project/Enterprise-Inference/
51
  ```
 
52
 
53
  #### Step 2
54
 
 
57
  pip install -r requirements.txt
58
  ```
59
  #### Step 3
60
+ Add Streamlit secrets
61
 
62
  ```sh
63
+ cd examples/trip_planner_agent
64
  ```
65
 
66
  create `.streamlit/secrets.toml` file and Update **Credentials**
 
70
  SERPER_API_KEY=""
71
  SCRAPINGANT_API_KEY=""
72
  OPENAI_API_KEY=""
73
+ MODEL_ID="meta-llama/Llama-3.3-70B-Instruct"
74
+ MODEL_BASE_URL="https://api.inference.denvrdata.com/v1/"
75
+
76
  ```
77
+ **Note**: You can alternatively add these secrets directly to Hugging Face Spaces Secrets, under the Settings tab, if deploying the Streamlit application directly on Hugging Face.
78
+
79
  #### Step 4
80
 
81
  Run the application
82
 
83
  ```sh
84
+ streamlit run app.py
85
  ```
86
 
87
+ Your application should be up and running in your web browser.
88
 
89
+ β˜… **Disclaimer**: The application uses meta-llama/Llama-3.3-70B-Instruct by default. Ensure you have access to an OpenAI-compatible API and be aware of any associated costs.
90
 
91
  ## Details & Explanation
92
 
 
93
  - **Components**:
94
+ - [trip_tasks.py](trip_tasks.py): Contains task prompts for the agents.
95
+ - [trip_agents.py](trip_agents.py): Manages the creation of agents.
96
+ - [tools](tools) directory: Houses tool classes used by agents.
97
+ - [app.py](app.py): The heart of the frontend Streamlit app.
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
+ ## LLM Model
 
 
 
 
 
 
 
100
 
101
+ To switch the LLM model being used, you can switch the `MODEL_ID` in the `.streamlit/secrets.toml` file.
102
 
103
  ## Using Local Models with Ollama
104
 
 
139
 
140
  ## License
141
 
142
+ VacAIgent is open-sourced under the MIT license.
 
 
 
 
images/hf_vacaigent.png ADDED

Git LFS Details

  • SHA256: c45923dbf7dde5174f701520d8120171061de357c458fdbe9816c323fd323f12
  • Pointer size: 131 Bytes
  • Size of remote file: 202 kB