Spaces:
Running
Running
Uploading app.py
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
7 |
+
|
8 |
+
# Device settings
|
9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
+
|
12 |
+
# Load model with caching
|
13 |
+
@st.cache_resource
|
14 |
+
def load_model():
|
15 |
+
CHECKPOINT = "microsoft/Florence-2-base-ft"
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(CHECKPOINT, trust_remote_code=True).to(device, dtype=torch_dtype)
|
17 |
+
processor = AutoProcessor.from_pretrained(CHECKPOINT, trust_remote_code=True)
|
18 |
+
return model, processor
|
19 |
+
|
20 |
+
# Load the model and processor
|
21 |
+
try:
|
22 |
+
model, processor = load_model()
|
23 |
+
except Exception as e:
|
24 |
+
st.error(f"Model loading failed: {e}")
|
25 |
+
st.stop()
|
26 |
+
|
27 |
+
# UI title
|
28 |
+
st.title("Florence-2 Multi-Modal Model Playground")
|
29 |
+
|
30 |
+
# Task selector
|
31 |
+
task = st.selectbox("Select Task", ["Object Detection (OD)", "Phrase Grounding (PG)", "Image Captioning (IC)"])
|
32 |
+
|
33 |
+
# Phrase input for PG
|
34 |
+
phrase = ""
|
35 |
+
if task == "Phrase Grounding (PG)":
|
36 |
+
phrase = st.text_input("Enter phrase for grounding (e.g., 'A red car')", "")
|
37 |
+
|
38 |
+
# Image uploader
|
39 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
40 |
+
|
41 |
+
# If file uploaded
|
42 |
+
if uploaded_file:
|
43 |
+
try:
|
44 |
+
image = Image.open(uploaded_file).convert("RGB")
|
45 |
+
except Exception as e:
|
46 |
+
st.error(f"Error loading image: {e}")
|
47 |
+
st.stop()
|
48 |
+
|
49 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
50 |
+
|
51 |
+
# Task-specific prompt
|
52 |
+
if task == "Object Detection (OD)":
|
53 |
+
task_prompt = "<OD>"
|
54 |
+
elif task == "Phrase Grounding (PG)":
|
55 |
+
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
|
56 |
+
else:
|
57 |
+
task_prompt = "<CAPTION>"
|
58 |
+
|
59 |
+
# Preprocess inputs
|
60 |
+
try:
|
61 |
+
inputs = processor(text=task_prompt + phrase, images=image, return_tensors="pt").to(device, torch_dtype)
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Error during preprocessing: {e}")
|
64 |
+
st.stop()
|
65 |
+
|
66 |
+
# Generate output
|
67 |
+
with torch.no_grad():
|
68 |
+
try:
|
69 |
+
generated_ids = model.generate(
|
70 |
+
input_ids=inputs["input_ids"],
|
71 |
+
pixel_values=inputs["pixel_values"],
|
72 |
+
max_new_tokens=512,
|
73 |
+
num_beams=3,
|
74 |
+
do_sample=False
|
75 |
+
)
|
76 |
+
except Exception as e:
|
77 |
+
st.error(f"Error during generation: {e}")
|
78 |
+
st.stop()
|
79 |
+
|
80 |
+
# Decode and post-process
|
81 |
+
try:
|
82 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
83 |
+
parsed_answer = processor.post_process_generation(
|
84 |
+
generated_text,
|
85 |
+
task=task_prompt,
|
86 |
+
image_size=(image.width, image.height)
|
87 |
+
)
|
88 |
+
except Exception as e:
|
89 |
+
st.error(f"Post-processing failed: {e}")
|
90 |
+
st.stop()
|
91 |
+
|
92 |
+
# Display results
|
93 |
+
if task in ["Object Detection (OD)", "Phrase Grounding (PG)"]:
|
94 |
+
key = "<OD>" if task == "Object Detection (OD)" else "<CAPTION_TO_PHRASE_GROUNDING>"
|
95 |
+
detections = parsed_answer.get(key, {"bboxes": [], "labels": []})
|
96 |
+
bboxes = detections.get("bboxes", [])
|
97 |
+
labels = detections.get("labels", [])
|
98 |
+
|
99 |
+
draw = ImageDraw.Draw(image)
|
100 |
+
data = []
|
101 |
+
|
102 |
+
for bbox, label in zip(bboxes, labels):
|
103 |
+
x_min, y_min, x_max, y_max = map(int, bbox)
|
104 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
|
105 |
+
draw.text((x_min, max(0, y_min - 10)), label, fill="red")
|
106 |
+
data.append([x_min, y_min, x_max - x_min, y_max - y_min, label])
|
107 |
+
|
108 |
+
st.image(image, caption="Detected Objects", use_container_width=True)
|
109 |
+
df = pd.DataFrame(data, columns=["x", "y", "w", "h", "object"])
|
110 |
+
st.dataframe(df)
|
111 |
+
|
112 |
+
else:
|
113 |
+
caption = parsed_answer.get("<CAPTION>", "No caption generated.")
|
114 |
+
st.subheader("Generated Caption:")
|
115 |
+
st.success(caption)
|