import streamlit as st import torch import numpy as np import pandas as pd from PIL import Image, ImageDraw from transformers import AutoProcessor, AutoModelForCausalLM # Device settings device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Load model with caching @st.cache_resource def load_model(): CHECKPOINT = "microsoft/Florence-2-base-ft" model = AutoModelForCausalLM.from_pretrained(CHECKPOINT, trust_remote_code=True).to(device, dtype=torch_dtype) processor = AutoProcessor.from_pretrained(CHECKPOINT, trust_remote_code=True) return model, processor # Load the model and processor try: model, processor = load_model() except Exception as e: st.error(f"Model loading failed: {e}") st.stop() # UI title st.title("Florence-2 Multi-Modal Model Playground") # Task selector task = st.selectbox("Select Task", ["Object Detection (OD)", "Phrase Grounding (PG)", "Image Captioning (IC)"]) # Phrase input for PG phrase = "" if task == "Phrase Grounding (PG)": phrase = st.text_input("Enter phrase for grounding (e.g., 'A red car')", "") # Image uploader uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) # If file uploaded if uploaded_file: try: image = Image.open(uploaded_file).convert("RGB") except Exception as e: st.error(f"Error loading image: {e}") st.stop() st.image(image, caption="Uploaded Image", use_container_width=True) # Task-specific prompt if task == "Object Detection (OD)": task_prompt = "" elif task == "Phrase Grounding (PG)": task_prompt = "" else: task_prompt = "" # Preprocess inputs try: inputs = processor(text=task_prompt + phrase, images=image, return_tensors="pt").to(device, torch_dtype) except Exception as e: st.error(f"Error during preprocessing: {e}") st.stop() # Generate output with torch.no_grad(): try: generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=512, num_beams=3, do_sample=False ) except Exception as e: st.error(f"Error during generation: {e}") st.stop() # Decode and post-process try: generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=task_prompt, image_size=(image.width, image.height) ) except Exception as e: st.error(f"Post-processing failed: {e}") st.stop() # Display results if task in ["Object Detection (OD)", "Phrase Grounding (PG)"]: key = "" if task == "Object Detection (OD)" else "" detections = parsed_answer.get(key, {"bboxes": [], "labels": []}) bboxes = detections.get("bboxes", []) labels = detections.get("labels", []) draw = ImageDraw.Draw(image) data = [] for bbox, label in zip(bboxes, labels): x_min, y_min, x_max, y_max = map(int, bbox) draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3) draw.text((x_min, max(0, y_min - 10)), label, fill="red") data.append([x_min, y_min, x_max - x_min, y_max - y_min, label]) st.image(image, caption="Detected Objects", use_container_width=True) df = pd.DataFrame(data, columns=["x", "y", "w", "h", "object"]) st.dataframe(df) else: caption = parsed_answer.get("", "No caption generated.") st.subheader("Generated Caption:") st.success(caption)