Izac commited on
Commit
1aebec7
·
verified ·
1 Parent(s): b6ce9d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -164,8 +164,8 @@ def gradio_process_image(input_image, resolution, num_inference_steps, strength,
164
 
165
  condition_image = prepare_image(input_image, resolution, hdr)
166
 
167
- prompt = "masterpiece, best quality, highres"
168
- negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
169
 
170
  options = {
171
  "prompt": prompt,
@@ -206,7 +206,7 @@ with gr.Blocks() as demo:
206
  run_button = gr.Button("Enhance Image")
207
  with gr.Column():
208
  output_slider = ImageSlider(label="Before / After", type="numpy")
209
- with gr.Accordion("Advanced Options", open=False):
210
  resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
211
  num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
212
  strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
@@ -227,7 +227,7 @@ with gr.Blocks() as demo:
227
  inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
228
  outputs=output_slider,
229
  fn=gradio_process_image,
230
- cache_examples=True,
231
  )
232
 
233
  demo.launch(share=True)
 
164
 
165
  condition_image = prepare_image(input_image, resolution, hdr)
166
 
167
+ prompt = "detailed eyes,masterpiece, best quality, highres"
168
+ negative_prompt = "pixelated, hard edges,low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
169
 
170
  options = {
171
  "prompt": prompt,
 
206
  run_button = gr.Button("Enhance Image")
207
  with gr.Column():
208
  output_slider = ImageSlider(label="Before / After", type="numpy")
209
+ with gr.Accordion("Advanced Options", open=True):
210
  resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
211
  num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
212
  strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
 
227
  inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
228
  outputs=output_slider,
229
  fn=gradio_process_image,
230
+ cache_examples=False,
231
  )
232
 
233
  demo.launch(share=True)