Spaces:
Running
Running
Jean Louis
commited on
Commit
·
01a937e
1
Parent(s):
0c3183e
Updated HTML files and CSS
Browse files- 01-prepare-python.html +74 -62
01-prepare-python.html
CHANGED
@@ -11,105 +11,121 @@
|
|
11 |
<body>
|
12 |
<h1>Prepare Python environment to download Hugging Face models</h1>
|
13 |
|
14 |
-
<p>This guide will
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
<p>Follow this guide, or <a href="index.html">return to the main page</a> if needed.</p>
|
19 |
|
20 |
<hr />
|
21 |
|
22 |
-
<h2>1.
|
23 |
|
24 |
-
<
|
25 |
|
26 |
-
<
|
27 |
-
|
28 |
-
<p>Run the following command in your terminal or command prompt:</p>
|
29 |
|
30 |
<p><code>bash
|
31 |
-
|
32 |
</code></p>
|
33 |
|
34 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
<p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
<p><code>bash
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
</code></p>
|
41 |
|
42 |
<hr />
|
43 |
|
44 |
-
<h2>2. Install
|
45 |
|
46 |
-
<p>
|
47 |
|
48 |
-
<h3>
|
49 |
|
50 |
-
<p>Run the following command:</p>
|
51 |
|
52 |
<p><code>bash
|
53 |
-
pip install huggingface_hub
|
54 |
</code></p>
|
55 |
|
56 |
<h3>Verify Installation</h3>
|
57 |
|
58 |
-
<p>
|
59 |
|
60 |
<p><code>bash
|
61 |
-
|
|
|
62 |
</code></p>
|
63 |
|
64 |
<hr />
|
65 |
|
66 |
-
<h2>3.
|
67 |
-
|
68 |
-
<p>The <code>huggingface-cli</code> tool allows you to interact with the Hugging Face Hub directly from the command line.</p>
|
69 |
|
70 |
-
<
|
71 |
|
72 |
-
<h3>
|
73 |
|
74 |
-
<p>
|
75 |
|
76 |
-
<p><code>
|
77 |
-
huggingface-cli
|
78 |
</code></p>
|
79 |
|
80 |
-
<
|
81 |
|
82 |
-
<
|
83 |
-
|
84 |
-
<p><code>
|
85 |
-
huggingface-cli download gpt2
|
86 |
-
</code></p>
|
87 |
|
88 |
-
<
|
89 |
|
90 |
-
<p>
|
91 |
|
92 |
-
<
|
93 |
-
huggingface-cli --help
|
94 |
-
</code></p>
|
95 |
|
96 |
-
<
|
|
|
97 |
|
98 |
-
<
|
99 |
|
100 |
-
<p>
|
|
|
|
|
101 |
|
102 |
-
<
|
103 |
-
from transformers import pipeline
|
104 |
|
105 |
-
|
106 |
-
|
|
|
107 |
|
108 |
-
|
109 |
-
output = generator("Hello, how are you?", max_length=50)
|
110 |
-
print(output)
|
111 |
-
</pre>
|
112 |
|
|
|
|
|
113 |
|
114 |
<hr />
|
115 |
|
@@ -124,24 +140,20 @@ print(output)
|
|
124 |
</thead>
|
125 |
<tbody>
|
126 |
<tr>
|
127 |
-
<td> <code>
|
128 |
-
<td>
|
129 |
-
</tr>
|
130 |
-
<tr>
|
131 |
-
<td> <code>pip install huggingface_hub</code> </td>
|
132 |
-
<td> Install the <code>huggingface_hub</code> package. </td>
|
133 |
</tr>
|
134 |
<tr>
|
135 |
-
<td> <code>
|
136 |
-
<td>
|
137 |
</tr>
|
138 |
<tr>
|
139 |
-
<td> <code>
|
140 |
-
<td>
|
141 |
</tr>
|
142 |
<tr>
|
143 |
-
<td> <code>huggingface-cli download
|
144 |
-
<td> Download the
|
145 |
</tr>
|
146 |
</tbody>
|
147 |
</table>
|
@@ -149,7 +161,7 @@ print(output)
|
|
149 |
|
150 |
<hr />
|
151 |
|
152 |
-
<p>Now you’re ready to use
|
153 |
|
154 |
<h1>Proceed to next step</h1>
|
155 |
|
|
|
11 |
<body>
|
12 |
<h1>Prepare Python environment to download Hugging Face models</h1>
|
13 |
|
14 |
+
<p>This guide will walk you through setting up a Python environment named
|
15 |
+
<strong><code>empower</code></strong>, installing the necessary Hugging Face packages, and
|
16 |
+
downloading and using the <strong><code>microsoft/Phi-4-mini-instruct</code></strong> model on
|
17 |
+
a GNU/Linux system.</p>
|
18 |
|
19 |
<p>Follow this guide, or <a href="index.html">return to the main page</a> if needed.</p>
|
20 |
|
21 |
<hr />
|
22 |
|
23 |
+
<h2>1. Set Up Python Environment</h2>
|
24 |
|
25 |
+
<h3>Check Python Installation</h3>
|
26 |
|
27 |
+
<p>Ensure Python 3 is installed by running:</p>
|
|
|
|
|
28 |
|
29 |
<p><code>bash
|
30 |
+
python3 --version
|
31 |
</code></p>
|
32 |
|
33 |
+
<p>If Python is not installed, install it using your package manager. For example:</p>
|
34 |
+
|
35 |
+
<ul>
|
36 |
+
<li><p>On Debian/Ubuntu:</p>
|
37 |
+
|
38 |
+
<p><code>bash
|
39 |
+
sudo apt update
|
40 |
+
sudo apt install python3 python3-venv
|
41 |
+
</code></p></li>
|
42 |
+
<li><p>On Fedora:</p>
|
43 |
|
44 |
+
<p><code>bash
|
45 |
+
sudo dnf install python3
|
46 |
+
</code></p></li>
|
47 |
+
</ul>
|
48 |
+
|
49 |
+
|
50 |
+
<h3>Create a Virtual Environment</h3>
|
51 |
+
|
52 |
+
<p>Create a virtual environment named <strong><code>empower</code></strong>:</p>
|
53 |
|
54 |
<p><code>bash
|
55 |
+
python3 -m venv empower
|
56 |
+
</code></p>
|
57 |
+
|
58 |
+
<p>Activate the virtual environment:
|
59 |
+
<code>bash
|
60 |
+
source empower/bin/activate
|
61 |
</code></p>
|
62 |
|
63 |
<hr />
|
64 |
|
65 |
+
<h2>2. Install Hugging Face Packages</h2>
|
66 |
|
67 |
+
<p>Install the necessary Hugging Face packages to interact with models and the Hugging Face Hub.</p>
|
68 |
|
69 |
+
<h3>Install <code>transformers</code> and <code>huggingface_hub</code></h3>
|
70 |
|
71 |
+
<p>Run the following command to install both packages:</p>
|
72 |
|
73 |
<p><code>bash
|
74 |
+
pip install transformers huggingface_hub
|
75 |
</code></p>
|
76 |
|
77 |
<h3>Verify Installation</h3>
|
78 |
|
79 |
+
<p>Check if the packages are installed correctly:</p>
|
80 |
|
81 |
<p><code>bash
|
82 |
+
python3 -c "from transformers import pipeline; print('Transformers installed successfully!')"
|
83 |
+
python3 -c "from huggingface_hub import HfApi; print('Hugging Face Hub installed successfully!')"
|
84 |
</code></p>
|
85 |
|
86 |
<hr />
|
87 |
|
88 |
+
<h2>3. Download the <code>microsoft/Phi-4-mini-instruct</code> Model</h2>
|
|
|
|
|
89 |
|
90 |
+
<p>To download and use the <strong><code>microsoft/Phi-4-mini-instruct</code></strong> model, follow these steps.</p>
|
91 |
|
92 |
+
<h3>Using <code>huggingface-cli</code> to Download the Model</h3>
|
93 |
|
94 |
+
<p>Run the following command to download the model:</p>
|
95 |
|
96 |
+
<p><code>bash
|
97 |
+
huggingface-cli download microsoft/Phi-4-mini-instruct
|
98 |
</code></p>
|
99 |
|
100 |
+
<p>This will download the model files to your current directory.</p>
|
101 |
|
102 |
+
<hr />
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
<h2>4. Load and Use the Model in Python</h2>
|
105 |
|
106 |
+
<p>Once the model is downloaded, you can load and use it in your Python code.</p>
|
107 |
|
108 |
+
<h3>Example Code</h3>
|
|
|
|
|
109 |
|
110 |
+
<p>```python
|
111 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer</p>
|
112 |
|
113 |
+
<h1>Load the model and tokenizer</h1>
|
114 |
|
115 |
+
<p>model_name = “microsoft/Phi-4-mini-instruct”
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
117 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)</p>
|
118 |
|
119 |
+
<h1>Generate text</h1>
|
|
|
120 |
|
121 |
+
<p>input_text = “What is the capital of France?”
|
122 |
+
inputs = tokenizer(input_text, return_tensors=“pt”)
|
123 |
+
outputs = model.generate(**inputs, max_length=50)</p>
|
124 |
|
125 |
+
<h1>Decode and print the output</h1>
|
|
|
|
|
|
|
126 |
|
127 |
+
<p>print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
128 |
+
```</p>
|
129 |
|
130 |
<hr />
|
131 |
|
|
|
140 |
</thead>
|
141 |
<tbody>
|
142 |
<tr>
|
143 |
+
<td> <code>python3 -m venv empower</code> </td>
|
144 |
+
<td> Create a virtual environment named <code>empower</code>. </td>
|
|
|
|
|
|
|
|
|
145 |
</tr>
|
146 |
<tr>
|
147 |
+
<td> <code>source empower/bin/activate</code> </td>
|
148 |
+
<td> Activate the <code>empower</code> environment. </td>
|
149 |
</tr>
|
150 |
<tr>
|
151 |
+
<td> <code>pip install transformers huggingface_hub</code> </td>
|
152 |
+
<td> Install Hugging Face packages. </td>
|
153 |
</tr>
|
154 |
<tr>
|
155 |
+
<td> <code>huggingface-cli download microsoft/Phi-4-mini-instruct</code> </td>
|
156 |
+
<td> Download the model. </td>
|
157 |
</tr>
|
158 |
</tbody>
|
159 |
</table>
|
|
|
161 |
|
162 |
<hr />
|
163 |
|
164 |
+
<p>Now you’re ready to use the <strong><code>microsoft/Phi-4-mini-instruct</code></strong> model in your Python projects on GNU/Linux! 🚀</p>
|
165 |
|
166 |
<h1>Proceed to next step</h1>
|
167 |
|