Spaces:
Running
on
Zero
Running
on
Zero
revitalize repo
Browse files- app.py +39 -9
- module/attention.py +0 -397
- module/transformers/transformer_2d_ExtractKV.py +0 -595
- module/unet/unet_2d_expandKV.py +0 -164
- module/unet/unet_2d_extractKV.py +0 -1347
- module/unet/unet_2d_extractKV_blocks.py +0 -1417
- module/unet/unet_2d_extractKV_res.py +0 -1589
- pipelines/sdxl_instantir.py +1 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import os
|
2 |
import torch
|
|
|
|
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
from PIL import Image
|
6 |
|
7 |
from diffusers import DDPMScheduler
|
@@ -12,6 +14,31 @@ from pipelines.sdxl_instantir import InstantIRPipeline
|
|
12 |
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if not os.path.exists("models/adapter.pt"):
|
16 |
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".")
|
17 |
if not os.path.exists("models/aggregator.pt"):
|
@@ -22,6 +49,7 @@ if not os.path.exists("models/previewer_lora_weights.bin"):
|
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
24 |
dinov2_repo_id = "facebook/dinov2-large"
|
|
|
25 |
|
26 |
if torch.cuda.is_available():
|
27 |
torch_dtype = torch.float16
|
@@ -29,7 +57,7 @@ else:
|
|
29 |
torch_dtype = torch.float32
|
30 |
|
31 |
# Load pretrained models.
|
32 |
-
print("
|
33 |
pipe = InstantIRPipeline.from_pretrained(
|
34 |
sdxl_repo_id,
|
35 |
torch_dtype=torch_dtype,
|
@@ -46,7 +74,7 @@ load_adapter_to_pipe(
|
|
46 |
# Prepare previewer
|
47 |
lora_alpha = pipe.prepare_previewers("models")
|
48 |
print(f"use lora alpha {lora_alpha}")
|
49 |
-
lora_alpha = pipe.prepare_previewers(
|
50 |
print(f"use lora alpha {lora_alpha}")
|
51 |
pipe.to(device=device, dtype=torch_dtype)
|
52 |
pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
|
@@ -63,7 +91,7 @@ aggregator_state_dict = torch.load(
|
|
63 |
"models/aggregator.pt",
|
64 |
map_location="cpu"
|
65 |
)
|
66 |
-
pipe.aggregator.load_state_dict(aggregator_state_dict
|
67 |
pipe.aggregator.to(device=device, dtype=torch_dtype)
|
68 |
|
69 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -92,8 +120,7 @@ def dynamic_guidance_slider(sampling_steps):
|
|
92 |
def show_final_preview(preview_row):
|
93 |
return preview_row[-1][0]
|
94 |
|
95 |
-
|
96 |
-
@torch.no_grad()
|
97 |
def instantir_restore(
|
98 |
lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0,
|
99 |
creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0):
|
@@ -101,20 +128,23 @@ def instantir_restore(
|
|
101 |
if "lcm" not in pipe.unet.active_adapters():
|
102 |
pipe.unet.set_adapter('lcm')
|
103 |
else:
|
104 |
-
if "
|
105 |
-
pipe.unet.set_adapter('
|
106 |
|
107 |
if isinstance(guidance_end, int):
|
108 |
guidance_end = guidance_end / steps
|
|
|
|
|
109 |
if isinstance(preview_start, int):
|
110 |
preview_start = preview_start / steps
|
|
|
|
|
111 |
lq = [resize_img(lq.convert("RGB"), size=(width, height))]
|
112 |
generator = torch.Generator(device=device).manual_seed(seed)
|
113 |
timesteps = [
|
114 |
i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps)
|
115 |
]
|
116 |
timesteps = timesteps[::-1]
|
117 |
-
start_timestep = timesteps[0]
|
118 |
|
119 |
prompt = PROMPT if len(prompt)==0 else prompt
|
120 |
neg_prompt = NEG_PROMPT
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import spaces
|
4 |
+
|
5 |
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
from PIL import Image
|
8 |
|
9 |
from diffusers import DDPMScheduler
|
|
|
14 |
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
|
17 |
+
|
18 |
+
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
19 |
+
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
|
20 |
+
|
21 |
+
w, h = input_image.size
|
22 |
+
if size is not None:
|
23 |
+
w_resize_new, h_resize_new = size
|
24 |
+
else:
|
25 |
+
# ratio = min_side / min(h, w)
|
26 |
+
# w, h = round(ratio*w), round(ratio*h)
|
27 |
+
ratio = max_side / max(h, w)
|
28 |
+
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
29 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
30 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
31 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
32 |
+
|
33 |
+
if pad_to_max_side:
|
34 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
35 |
+
offset_x = (max_side - w_resize_new) // 2
|
36 |
+
offset_y = (max_side - h_resize_new) // 2
|
37 |
+
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
|
38 |
+
input_image = Image.fromarray(res)
|
39 |
+
return input_image
|
40 |
+
|
41 |
+
|
42 |
if not os.path.exists("models/adapter.pt"):
|
43 |
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".")
|
44 |
if not os.path.exists("models/aggregator.pt"):
|
|
|
49 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
50 |
sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
51 |
dinov2_repo_id = "facebook/dinov2-large"
|
52 |
+
lcm_repo_id = "latent-consistency/lcm-lora-sdxl"
|
53 |
|
54 |
if torch.cuda.is_available():
|
55 |
torch_dtype = torch.float16
|
|
|
57 |
torch_dtype = torch.float32
|
58 |
|
59 |
# Load pretrained models.
|
60 |
+
print("Initializing pipeline...")
|
61 |
pipe = InstantIRPipeline.from_pretrained(
|
62 |
sdxl_repo_id,
|
63 |
torch_dtype=torch_dtype,
|
|
|
74 |
# Prepare previewer
|
75 |
lora_alpha = pipe.prepare_previewers("models")
|
76 |
print(f"use lora alpha {lora_alpha}")
|
77 |
+
lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True)
|
78 |
print(f"use lora alpha {lora_alpha}")
|
79 |
pipe.to(device=device, dtype=torch_dtype)
|
80 |
pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
|
|
|
91 |
"models/aggregator.pt",
|
92 |
map_location="cpu"
|
93 |
)
|
94 |
+
pipe.aggregator.load_state_dict(aggregator_state_dict)
|
95 |
pipe.aggregator.to(device=device, dtype=torch_dtype)
|
96 |
|
97 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
120 |
def show_final_preview(preview_row):
|
121 |
return preview_row[-1][0]
|
122 |
|
123 |
+
@spaces.GPU
|
|
|
124 |
def instantir_restore(
|
125 |
lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0,
|
126 |
creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0):
|
|
|
128 |
if "lcm" not in pipe.unet.active_adapters():
|
129 |
pipe.unet.set_adapter('lcm')
|
130 |
else:
|
131 |
+
if "previewer" not in pipe.unet.active_adapters():
|
132 |
+
pipe.unet.set_adapter('previewer')
|
133 |
|
134 |
if isinstance(guidance_end, int):
|
135 |
guidance_end = guidance_end / steps
|
136 |
+
elif guidance_end > 1.0:
|
137 |
+
guidance_end = guidance_end / steps
|
138 |
if isinstance(preview_start, int):
|
139 |
preview_start = preview_start / steps
|
140 |
+
elif preview_start > 1.0:
|
141 |
+
preview_start = preview_start / steps
|
142 |
lq = [resize_img(lq.convert("RGB"), size=(width, height))]
|
143 |
generator = torch.Generator(device=device).manual_seed(seed)
|
144 |
timesteps = [
|
145 |
i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps)
|
146 |
]
|
147 |
timesteps = timesteps[::-1]
|
|
|
148 |
|
149 |
prompt = PROMPT if len(prompt)==0 else prompt
|
150 |
neg_prompt = NEG_PROMPT
|
module/attention.py
CHANGED
@@ -37,52 +37,6 @@ def create_custom_forward(module):
|
|
37 |
|
38 |
return custom_forward
|
39 |
|
40 |
-
def get_encoder_trainable_params(encoder):
|
41 |
-
trainable_params = []
|
42 |
-
|
43 |
-
for module in encoder.modules():
|
44 |
-
if isinstance(module, ExtractKVTransformerBlock):
|
45 |
-
# If LORA exists in attn1, train them. Otherwise, attn1 is frozen
|
46 |
-
# NOTE: not sure if we want it under a different subset
|
47 |
-
if module.attn1.to_k.lora_layer is not None:
|
48 |
-
trainable_params.extend(module.attn1.to_k.lora_layer.parameters())
|
49 |
-
trainable_params.extend(module.attn1.to_v.lora_layer.parameters())
|
50 |
-
trainable_params.extend(module.attn1.to_q.lora_layer.parameters())
|
51 |
-
trainable_params.extend(module.attn1.to_out[0].lora_layer.parameters())
|
52 |
-
|
53 |
-
if module.attn2.to_k.lora_layer is not None:
|
54 |
-
trainable_params.extend(module.attn2.to_k.lora_layer.parameters())
|
55 |
-
trainable_params.extend(module.attn2.to_v.lora_layer.parameters())
|
56 |
-
trainable_params.extend(module.attn2.to_q.lora_layer.parameters())
|
57 |
-
trainable_params.extend(module.attn2.to_out[0].lora_layer.parameters())
|
58 |
-
|
59 |
-
# If LORAs exist in kvcopy layers, train only them
|
60 |
-
if module.extract_kv1.to_k.lora_layer is not None:
|
61 |
-
trainable_params.extend(module.extract_kv1.to_k.lora_layer.parameters())
|
62 |
-
trainable_params.extend(module.extract_kv1.to_v.lora_layer.parameters())
|
63 |
-
else:
|
64 |
-
trainable_params.extend(module.extract_kv1.to_k.parameters())
|
65 |
-
trainable_params.extend(module.extract_kv1.to_v.parameters())
|
66 |
-
|
67 |
-
return trainable_params
|
68 |
-
|
69 |
-
def get_adapter_layers(encoder):
|
70 |
-
adapter_layers = []
|
71 |
-
for module in encoder.modules():
|
72 |
-
if isinstance(module, ExtractKVTransformerBlock):
|
73 |
-
adapter_layers.append(module.extract_kv2)
|
74 |
-
|
75 |
-
return adapter_layers
|
76 |
-
|
77 |
-
def get_adapter_trainable_params(encoder):
|
78 |
-
adapter_layers = get_adapter_layers(encoder)
|
79 |
-
trainable_params = []
|
80 |
-
for layer in adapter_layers:
|
81 |
-
trainable_params.extend(layer.to_v.parameters())
|
82 |
-
trainable_params.extend(layer.to_k.parameters())
|
83 |
-
|
84 |
-
return trainable_params
|
85 |
-
|
86 |
def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True):
|
87 |
|
88 |
if do_ckpt:
|
@@ -303,354 +257,3 @@ class GatedSelfAttentionDense(nn.Module):
|
|
303 |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
304 |
|
305 |
return x
|
306 |
-
|
307 |
-
|
308 |
-
@maybe_allow_in_graph
|
309 |
-
class ExtractKVTransformerBlock(nn.Module):
|
310 |
-
r"""
|
311 |
-
A Transformer block that also outputs KV metrics.
|
312 |
-
|
313 |
-
Parameters:
|
314 |
-
dim (`int`): The number of channels in the input and output.
|
315 |
-
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
316 |
-
attention_head_dim (`int`): The number of channels in each head.
|
317 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
318 |
-
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
319 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
320 |
-
num_embeds_ada_norm (:
|
321 |
-
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
322 |
-
attention_bias (:
|
323 |
-
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
324 |
-
only_cross_attention (`bool`, *optional*):
|
325 |
-
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
326 |
-
double_self_attention (`bool`, *optional*):
|
327 |
-
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
328 |
-
upcast_attention (`bool`, *optional*):
|
329 |
-
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
330 |
-
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
331 |
-
Whether to use learnable elementwise affine parameters for normalization.
|
332 |
-
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
333 |
-
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
334 |
-
final_dropout (`bool` *optional*, defaults to False):
|
335 |
-
Whether to apply a final dropout after the last feed-forward layer.
|
336 |
-
attention_type (`str`, *optional*, defaults to `"default"`):
|
337 |
-
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
338 |
-
positional_embeddings (`str`, *optional*, defaults to `None`):
|
339 |
-
The type of positional embeddings to apply to.
|
340 |
-
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
341 |
-
The maximum number of positional embeddings to apply.
|
342 |
-
"""
|
343 |
-
|
344 |
-
def __init__(
|
345 |
-
self,
|
346 |
-
dim: int, # Originally hidden_size
|
347 |
-
num_attention_heads: int,
|
348 |
-
attention_head_dim: int,
|
349 |
-
dropout=0.0,
|
350 |
-
cross_attention_dim: Optional[int] = None,
|
351 |
-
activation_fn: str = "geglu",
|
352 |
-
num_embeds_ada_norm: Optional[int] = None,
|
353 |
-
attention_bias: bool = False,
|
354 |
-
only_cross_attention: bool = False,
|
355 |
-
double_self_attention: bool = False,
|
356 |
-
upcast_attention: bool = False,
|
357 |
-
norm_elementwise_affine: bool = True,
|
358 |
-
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
359 |
-
norm_eps: float = 1e-5,
|
360 |
-
final_dropout: bool = False,
|
361 |
-
attention_type: str = "default",
|
362 |
-
positional_embeddings: Optional[str] = None,
|
363 |
-
num_positional_embeddings: Optional[int] = None,
|
364 |
-
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
365 |
-
ada_norm_bias: Optional[int] = None,
|
366 |
-
ff_inner_dim: Optional[int] = None,
|
367 |
-
ff_bias: bool = True,
|
368 |
-
attention_out_bias: bool = True,
|
369 |
-
extract_self_attention_kv: bool = False,
|
370 |
-
extract_cross_attention_kv: bool = False,
|
371 |
-
):
|
372 |
-
super().__init__()
|
373 |
-
self.only_cross_attention = only_cross_attention
|
374 |
-
|
375 |
-
# We keep these boolean flags for backward-compatibility.
|
376 |
-
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
377 |
-
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
378 |
-
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
379 |
-
self.use_layer_norm = norm_type == "layer_norm"
|
380 |
-
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
381 |
-
|
382 |
-
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
383 |
-
raise ValueError(
|
384 |
-
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
385 |
-
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
386 |
-
)
|
387 |
-
|
388 |
-
self.norm_type = norm_type
|
389 |
-
self.num_embeds_ada_norm = num_embeds_ada_norm
|
390 |
-
|
391 |
-
if positional_embeddings and (num_positional_embeddings is None):
|
392 |
-
raise ValueError(
|
393 |
-
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
394 |
-
)
|
395 |
-
|
396 |
-
if positional_embeddings == "sinusoidal":
|
397 |
-
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
398 |
-
else:
|
399 |
-
self.pos_embed = None
|
400 |
-
|
401 |
-
# Define 3 blocks. Each block has its own normalization layer.
|
402 |
-
# 1. Self-Attn
|
403 |
-
if norm_type == "ada_norm":
|
404 |
-
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
405 |
-
elif norm_type == "ada_norm_zero":
|
406 |
-
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
407 |
-
elif norm_type == "ada_norm_continuous":
|
408 |
-
self.norm1 = AdaLayerNormContinuous(
|
409 |
-
dim,
|
410 |
-
ada_norm_continous_conditioning_embedding_dim,
|
411 |
-
norm_elementwise_affine,
|
412 |
-
norm_eps,
|
413 |
-
ada_norm_bias,
|
414 |
-
"rms_norm",
|
415 |
-
)
|
416 |
-
else:
|
417 |
-
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
418 |
-
|
419 |
-
self.attn1 = Attention(
|
420 |
-
query_dim=dim,
|
421 |
-
heads=num_attention_heads,
|
422 |
-
dim_head=attention_head_dim,
|
423 |
-
dropout=dropout,
|
424 |
-
bias=attention_bias,
|
425 |
-
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
426 |
-
upcast_attention=upcast_attention,
|
427 |
-
out_bias=attention_out_bias,
|
428 |
-
)
|
429 |
-
if extract_self_attention_kv:
|
430 |
-
self.extract_kv1 = KVCopy(cross_attention_dim=cross_attention_dim if only_cross_attention else None, inner_dim=dim)
|
431 |
-
|
432 |
-
# 2. Cross-Attn
|
433 |
-
if cross_attention_dim is not None or double_self_attention:
|
434 |
-
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
435 |
-
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
436 |
-
# the second cross attention block.
|
437 |
-
if norm_type == "ada_norm":
|
438 |
-
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
439 |
-
elif norm_type == "ada_norm_continuous":
|
440 |
-
self.norm2 = AdaLayerNormContinuous(
|
441 |
-
dim,
|
442 |
-
ada_norm_continous_conditioning_embedding_dim,
|
443 |
-
norm_elementwise_affine,
|
444 |
-
norm_eps,
|
445 |
-
ada_norm_bias,
|
446 |
-
"rms_norm",
|
447 |
-
)
|
448 |
-
else:
|
449 |
-
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
450 |
-
|
451 |
-
self.attn2 = Attention(
|
452 |
-
query_dim=dim,
|
453 |
-
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
454 |
-
heads=num_attention_heads,
|
455 |
-
dim_head=attention_head_dim,
|
456 |
-
dropout=dropout,
|
457 |
-
bias=attention_bias,
|
458 |
-
upcast_attention=upcast_attention,
|
459 |
-
out_bias=attention_out_bias,
|
460 |
-
) # is self-attn if encoder_hidden_states is none
|
461 |
-
if extract_cross_attention_kv:
|
462 |
-
self.extract_kv2 = KVCopy(cross_attention_dim=None, inner_dim=dim)
|
463 |
-
else:
|
464 |
-
self.norm2 = None
|
465 |
-
self.attn2 = None
|
466 |
-
|
467 |
-
# 3. Feed-forward
|
468 |
-
if norm_type == "ada_norm_continuous":
|
469 |
-
self.norm3 = AdaLayerNormContinuous(
|
470 |
-
dim,
|
471 |
-
ada_norm_continous_conditioning_embedding_dim,
|
472 |
-
norm_elementwise_affine,
|
473 |
-
norm_eps,
|
474 |
-
ada_norm_bias,
|
475 |
-
"layer_norm",
|
476 |
-
)
|
477 |
-
|
478 |
-
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
|
479 |
-
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
480 |
-
elif norm_type == "layer_norm_i2vgen":
|
481 |
-
self.norm3 = None
|
482 |
-
|
483 |
-
self.ff = FeedForward(
|
484 |
-
dim,
|
485 |
-
dropout=dropout,
|
486 |
-
activation_fn=activation_fn,
|
487 |
-
final_dropout=final_dropout,
|
488 |
-
inner_dim=ff_inner_dim,
|
489 |
-
bias=ff_bias,
|
490 |
-
)
|
491 |
-
|
492 |
-
# 4. Fuser
|
493 |
-
if attention_type == "gated" or attention_type == "gated-text-image":
|
494 |
-
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
495 |
-
|
496 |
-
# 5. Scale-shift for PixArt-Alpha.
|
497 |
-
if norm_type == "ada_norm_single":
|
498 |
-
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
499 |
-
|
500 |
-
# let chunk size default to None
|
501 |
-
self._chunk_size = None
|
502 |
-
self._chunk_dim = 0
|
503 |
-
|
504 |
-
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
505 |
-
# Sets chunk feed-forward
|
506 |
-
self._chunk_size = chunk_size
|
507 |
-
self._chunk_dim = dim
|
508 |
-
|
509 |
-
def forward(
|
510 |
-
self,
|
511 |
-
hidden_states: torch.FloatTensor,
|
512 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
513 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
514 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
515 |
-
timestep: Optional[torch.LongTensor] = None,
|
516 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
517 |
-
class_labels: Optional[torch.LongTensor] = None,
|
518 |
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
519 |
-
) -> torch.FloatTensor:
|
520 |
-
if cross_attention_kwargs is not None:
|
521 |
-
if cross_attention_kwargs.get("scale", None) is not None:
|
522 |
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
523 |
-
|
524 |
-
# Notice that normalization is always applied before the real computation in the following blocks.
|
525 |
-
# 0. Self-Attention
|
526 |
-
batch_size = hidden_states.shape[0]
|
527 |
-
|
528 |
-
if self.norm_type == "ada_norm":
|
529 |
-
norm_hidden_states = self.norm1(hidden_states, timestep)
|
530 |
-
elif self.norm_type == "ada_norm_zero":
|
531 |
-
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
532 |
-
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
533 |
-
)
|
534 |
-
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
535 |
-
norm_hidden_states = self.norm1(hidden_states)
|
536 |
-
elif self.norm_type == "ada_norm_continuous":
|
537 |
-
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
538 |
-
elif self.norm_type == "ada_norm_single":
|
539 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
540 |
-
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
541 |
-
).chunk(6, dim=1)
|
542 |
-
norm_hidden_states = self.norm1(hidden_states)
|
543 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
544 |
-
norm_hidden_states = norm_hidden_states.squeeze(1)
|
545 |
-
else:
|
546 |
-
raise ValueError("Incorrect norm used")
|
547 |
-
|
548 |
-
if self.pos_embed is not None:
|
549 |
-
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
550 |
-
|
551 |
-
# 1. Prepare GLIGEN inputs
|
552 |
-
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
553 |
-
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
554 |
-
kv_drop_idx = cross_attention_kwargs.pop("kv_drop_idx", None)
|
555 |
-
|
556 |
-
if hasattr(self, "extract_kv1"):
|
557 |
-
kv_out_self = self.extract_kv1(norm_hidden_states)
|
558 |
-
if kv_drop_idx is not None:
|
559 |
-
zero_kv_out_self_k = torch.zeros_like(kv_out_self.k)
|
560 |
-
kv_out_self.k[kv_drop_idx] = zero_kv_out_self_k[kv_drop_idx]
|
561 |
-
zero_kv_out_self_v = torch.zeros_like(kv_out_self.v)
|
562 |
-
kv_out_self.v[kv_drop_idx] = zero_kv_out_self_v[kv_drop_idx]
|
563 |
-
else:
|
564 |
-
kv_out_self = None
|
565 |
-
attn_output = self.attn1(
|
566 |
-
norm_hidden_states,
|
567 |
-
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
568 |
-
attention_mask=attention_mask,
|
569 |
-
**cross_attention_kwargs,
|
570 |
-
)
|
571 |
-
if self.norm_type == "ada_norm_zero":
|
572 |
-
attn_output = gate_msa.unsqueeze(1) * attn_output
|
573 |
-
elif self.norm_type == "ada_norm_single":
|
574 |
-
attn_output = gate_msa * attn_output
|
575 |
-
|
576 |
-
hidden_states = attn_output + hidden_states
|
577 |
-
if hidden_states.ndim == 4:
|
578 |
-
hidden_states = hidden_states.squeeze(1)
|
579 |
-
|
580 |
-
# 1.2 GLIGEN Control
|
581 |
-
if gligen_kwargs is not None:
|
582 |
-
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
583 |
-
|
584 |
-
# 3. Cross-Attention
|
585 |
-
if self.attn2 is not None:
|
586 |
-
if self.norm_type == "ada_norm":
|
587 |
-
norm_hidden_states = self.norm2(hidden_states, timestep)
|
588 |
-
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
589 |
-
norm_hidden_states = self.norm2(hidden_states)
|
590 |
-
elif self.norm_type == "ada_norm_single":
|
591 |
-
# For PixArt norm2 isn't applied here:
|
592 |
-
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
593 |
-
norm_hidden_states = hidden_states
|
594 |
-
elif self.norm_type == "ada_norm_continuous":
|
595 |
-
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
596 |
-
else:
|
597 |
-
raise ValueError("Incorrect norm")
|
598 |
-
|
599 |
-
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
600 |
-
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
601 |
-
|
602 |
-
attn_output = self.attn2(
|
603 |
-
norm_hidden_states,
|
604 |
-
encoder_hidden_states=encoder_hidden_states,
|
605 |
-
attention_mask=encoder_attention_mask,
|
606 |
-
temb=timestep,
|
607 |
-
**cross_attention_kwargs,
|
608 |
-
)
|
609 |
-
hidden_states = attn_output + hidden_states
|
610 |
-
|
611 |
-
if hasattr(self, "extract_kv2"):
|
612 |
-
kv_out_cross = self.extract_kv2(hidden_states)
|
613 |
-
if kv_drop_idx is not None:
|
614 |
-
zero_kv_out_cross_k = torch.zeros_like(kv_out_cross.k)
|
615 |
-
kv_out_cross.k[kv_drop_idx] = zero_kv_out_cross_k[kv_drop_idx]
|
616 |
-
zero_kv_out_cross_v = torch.zeros_like(kv_out_cross.v)
|
617 |
-
kv_out_cross.v[kv_drop_idx] = zero_kv_out_cross_v[kv_drop_idx]
|
618 |
-
else:
|
619 |
-
kv_out_cross = None
|
620 |
-
|
621 |
-
# 4. Feed-forward
|
622 |
-
# i2vgen doesn't have this norm 🤷♂️
|
623 |
-
if self.norm_type == "ada_norm_continuous":
|
624 |
-
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
625 |
-
elif not self.norm_type == "ada_norm_single":
|
626 |
-
norm_hidden_states = self.norm3(hidden_states)
|
627 |
-
|
628 |
-
if self.norm_type == "ada_norm_zero":
|
629 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
630 |
-
|
631 |
-
if self.norm_type == "ada_norm_single":
|
632 |
-
norm_hidden_states = self.norm2(hidden_states)
|
633 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
634 |
-
|
635 |
-
if self._chunk_size is not None:
|
636 |
-
# "feed_forward_chunk_size" can be used to save memory
|
637 |
-
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
638 |
-
else:
|
639 |
-
ff_output = self.ff(norm_hidden_states)
|
640 |
-
|
641 |
-
if self.norm_type == "ada_norm_zero":
|
642 |
-
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
643 |
-
elif self.norm_type == "ada_norm_single":
|
644 |
-
ff_output = gate_mlp * ff_output
|
645 |
-
|
646 |
-
hidden_states = ff_output + hidden_states
|
647 |
-
if hidden_states.ndim == 4:
|
648 |
-
hidden_states = hidden_states.squeeze(1)
|
649 |
-
|
650 |
-
return hidden_states, AttentionCache(self_attention=kv_out_self, cross_attention=kv_out_cross)
|
651 |
-
|
652 |
-
def init_kv_extraction(self):
|
653 |
-
if hasattr(self, "extract_kv1"):
|
654 |
-
self.extract_kv1.init_kv_copy(self.attn1)
|
655 |
-
if hasattr(self, "extract_kv2"):
|
656 |
-
self.extract_kv2.init_kv_copy(self.attn1)
|
|
|
37 |
|
38 |
return custom_forward
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True):
|
41 |
|
42 |
if do_ckpt:
|
|
|
257 |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
258 |
|
259 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module/transformers/transformer_2d_ExtractKV.py
DELETED
@@ -1,595 +0,0 @@
|
|
1 |
-
# Copy from diffusers.models.transformers.transformer_2d.py
|
2 |
-
|
3 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Any, Dict, Optional
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from torch import nn
|
22 |
-
|
23 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
-
from diffusers.utils import BaseOutput, deprecate, is_torch_version, logging
|
25 |
-
from diffusers.models.attention import BasicTransformerBlock
|
26 |
-
from diffusers.models.embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
|
27 |
-
from diffusers.models.modeling_utils import ModelMixin
|
28 |
-
from diffusers.models.normalization import AdaLayerNormSingle
|
29 |
-
|
30 |
-
from module.attention import ExtractKVTransformerBlock
|
31 |
-
|
32 |
-
|
33 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
34 |
-
|
35 |
-
|
36 |
-
@dataclass
|
37 |
-
class ExtractKVTransformer2DModelOutput(BaseOutput):
|
38 |
-
"""
|
39 |
-
The output of [`ExtractKVTransformer2DModel`].
|
40 |
-
|
41 |
-
Args:
|
42 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
43 |
-
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
44 |
-
distributions for the unnoised latent pixels.
|
45 |
-
"""
|
46 |
-
|
47 |
-
sample: torch.FloatTensor
|
48 |
-
cached_kvs: Dict[str, Any] = None
|
49 |
-
|
50 |
-
|
51 |
-
class ExtractKVTransformer2DModel(ModelMixin, ConfigMixin):
|
52 |
-
"""
|
53 |
-
A 2D Transformer model for image-like data which also outputs CrossAttention KV metrics.
|
54 |
-
|
55 |
-
Parameters:
|
56 |
-
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
57 |
-
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
58 |
-
in_channels (`int`, *optional*):
|
59 |
-
The number of channels in the input and output (specify if the input is **continuous**).
|
60 |
-
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
61 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
62 |
-
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
63 |
-
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
64 |
-
This is fixed during training since it is used to learn a number of position embeddings.
|
65 |
-
num_vector_embeds (`int`, *optional*):
|
66 |
-
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
67 |
-
Includes the class for the masked latent pixel.
|
68 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
69 |
-
num_embeds_ada_norm ( `int`, *optional*):
|
70 |
-
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
71 |
-
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
72 |
-
added to the hidden states.
|
73 |
-
|
74 |
-
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
75 |
-
attention_bias (`bool`, *optional*):
|
76 |
-
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
77 |
-
"""
|
78 |
-
|
79 |
-
_supports_gradient_checkpointing = True
|
80 |
-
_no_split_modules = ["BasicTransformerBlock"]
|
81 |
-
|
82 |
-
@register_to_config
|
83 |
-
def __init__(
|
84 |
-
self,
|
85 |
-
num_attention_heads: int = 16,
|
86 |
-
attention_head_dim: int = 88,
|
87 |
-
in_channels: Optional[int] = None,
|
88 |
-
out_channels: Optional[int] = None,
|
89 |
-
num_layers: int = 1,
|
90 |
-
dropout: float = 0.0,
|
91 |
-
norm_num_groups: int = 32,
|
92 |
-
cross_attention_dim: Optional[int] = None,
|
93 |
-
attention_bias: bool = False,
|
94 |
-
sample_size: Optional[int] = None,
|
95 |
-
num_vector_embeds: Optional[int] = None,
|
96 |
-
patch_size: Optional[int] = None,
|
97 |
-
activation_fn: str = "geglu",
|
98 |
-
num_embeds_ada_norm: Optional[int] = None,
|
99 |
-
use_linear_projection: bool = False,
|
100 |
-
only_cross_attention: bool = False,
|
101 |
-
double_self_attention: bool = False,
|
102 |
-
upcast_attention: bool = False,
|
103 |
-
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
104 |
-
norm_elementwise_affine: bool = True,
|
105 |
-
norm_eps: float = 1e-5,
|
106 |
-
attention_type: str = "default",
|
107 |
-
caption_channels: int = None,
|
108 |
-
interpolation_scale: float = None,
|
109 |
-
use_additional_conditions: Optional[bool] = None,
|
110 |
-
extract_self_attention_kv: bool = False,
|
111 |
-
extract_cross_attention_kv: bool = False,
|
112 |
-
):
|
113 |
-
super().__init__()
|
114 |
-
|
115 |
-
# Validate inputs.
|
116 |
-
if patch_size is not None:
|
117 |
-
if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
|
118 |
-
raise NotImplementedError(
|
119 |
-
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
120 |
-
)
|
121 |
-
elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None:
|
122 |
-
raise ValueError(
|
123 |
-
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
124 |
-
)
|
125 |
-
|
126 |
-
# Set some common variables used across the board.
|
127 |
-
self.use_linear_projection = use_linear_projection
|
128 |
-
self.interpolation_scale = interpolation_scale
|
129 |
-
self.caption_channels = caption_channels
|
130 |
-
self.num_attention_heads = num_attention_heads
|
131 |
-
self.attention_head_dim = attention_head_dim
|
132 |
-
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
133 |
-
self.in_channels = in_channels
|
134 |
-
self.out_channels = in_channels if out_channels is None else out_channels
|
135 |
-
self.gradient_checkpointing = False
|
136 |
-
if use_additional_conditions is None:
|
137 |
-
if norm_type == "ada_norm_single" and sample_size == 128:
|
138 |
-
use_additional_conditions = True
|
139 |
-
else:
|
140 |
-
use_additional_conditions = False
|
141 |
-
self.use_additional_conditions = use_additional_conditions
|
142 |
-
self.extract_self_attention_kv = extract_self_attention_kv
|
143 |
-
self.extract_cross_attention_kv = extract_cross_attention_kv
|
144 |
-
|
145 |
-
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
146 |
-
# Define whether input is continuous or discrete depending on configuration
|
147 |
-
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
148 |
-
self.is_input_vectorized = num_vector_embeds is not None
|
149 |
-
self.is_input_patches = in_channels is not None and patch_size is not None
|
150 |
-
|
151 |
-
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
152 |
-
deprecation_message = (
|
153 |
-
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
154 |
-
" incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
|
155 |
-
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
156 |
-
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
157 |
-
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
158 |
-
)
|
159 |
-
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
160 |
-
norm_type = "ada_norm"
|
161 |
-
|
162 |
-
if self.is_input_continuous and self.is_input_vectorized:
|
163 |
-
raise ValueError(
|
164 |
-
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
165 |
-
" sure that either `in_channels` or `num_vector_embeds` is None."
|
166 |
-
)
|
167 |
-
elif self.is_input_vectorized and self.is_input_patches:
|
168 |
-
raise ValueError(
|
169 |
-
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
170 |
-
" sure that either `num_vector_embeds` or `num_patches` is None."
|
171 |
-
)
|
172 |
-
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
173 |
-
raise ValueError(
|
174 |
-
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
175 |
-
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
176 |
-
)
|
177 |
-
|
178 |
-
# 2. Initialize the right blocks.
|
179 |
-
# These functions follow a common structure:
|
180 |
-
# a. Initialize the input blocks. b. Initialize the transformer blocks.
|
181 |
-
# c. Initialize the output blocks and other projection blocks when necessary.
|
182 |
-
if self.is_input_continuous:
|
183 |
-
self._init_continuous_input(norm_type=norm_type)
|
184 |
-
elif self.is_input_vectorized:
|
185 |
-
self._init_vectorized_inputs(norm_type=norm_type)
|
186 |
-
elif self.is_input_patches:
|
187 |
-
self._init_patched_inputs(norm_type=norm_type)
|
188 |
-
|
189 |
-
def _init_continuous_input(self, norm_type):
|
190 |
-
self.norm = torch.nn.GroupNorm(
|
191 |
-
num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True
|
192 |
-
)
|
193 |
-
if self.use_linear_projection:
|
194 |
-
self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim)
|
195 |
-
else:
|
196 |
-
self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0)
|
197 |
-
|
198 |
-
self.transformer_blocks = nn.ModuleList(
|
199 |
-
[
|
200 |
-
ExtractKVTransformerBlock(
|
201 |
-
self.inner_dim,
|
202 |
-
self.config.num_attention_heads,
|
203 |
-
self.config.attention_head_dim,
|
204 |
-
dropout=self.config.dropout,
|
205 |
-
cross_attention_dim=self.config.cross_attention_dim,
|
206 |
-
activation_fn=self.config.activation_fn,
|
207 |
-
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
208 |
-
attention_bias=self.config.attention_bias,
|
209 |
-
only_cross_attention=self.config.only_cross_attention,
|
210 |
-
double_self_attention=self.config.double_self_attention,
|
211 |
-
upcast_attention=self.config.upcast_attention,
|
212 |
-
norm_type=norm_type,
|
213 |
-
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
214 |
-
norm_eps=self.config.norm_eps,
|
215 |
-
attention_type=self.config.attention_type,
|
216 |
-
extract_self_attention_kv=self.config.extract_self_attention_kv,
|
217 |
-
extract_cross_attention_kv=self.config.extract_cross_attention_kv,
|
218 |
-
)
|
219 |
-
for _ in range(self.config.num_layers)
|
220 |
-
]
|
221 |
-
)
|
222 |
-
|
223 |
-
if self.use_linear_projection:
|
224 |
-
self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels)
|
225 |
-
else:
|
226 |
-
self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0)
|
227 |
-
|
228 |
-
def _init_vectorized_inputs(self, norm_type):
|
229 |
-
assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
230 |
-
assert (
|
231 |
-
self.config.num_vector_embeds is not None
|
232 |
-
), "Transformer2DModel over discrete input must provide num_embed"
|
233 |
-
|
234 |
-
self.height = self.config.sample_size
|
235 |
-
self.width = self.config.sample_size
|
236 |
-
self.num_latent_pixels = self.height * self.width
|
237 |
-
|
238 |
-
self.latent_image_embedding = ImagePositionalEmbeddings(
|
239 |
-
num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width
|
240 |
-
)
|
241 |
-
|
242 |
-
self.transformer_blocks = nn.ModuleList(
|
243 |
-
[
|
244 |
-
ExtractKVTransformerBlock(
|
245 |
-
self.inner_dim,
|
246 |
-
self.config.num_attention_heads,
|
247 |
-
self.config.attention_head_dim,
|
248 |
-
dropout=self.config.dropout,
|
249 |
-
cross_attention_dim=self.config.cross_attention_dim,
|
250 |
-
activation_fn=self.config.activation_fn,
|
251 |
-
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
252 |
-
attention_bias=self.config.attention_bias,
|
253 |
-
only_cross_attention=self.config.only_cross_attention,
|
254 |
-
double_self_attention=self.config.double_self_attention,
|
255 |
-
upcast_attention=self.config.upcast_attention,
|
256 |
-
norm_type=norm_type,
|
257 |
-
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
258 |
-
norm_eps=self.config.norm_eps,
|
259 |
-
attention_type=self.config.attention_type,
|
260 |
-
extract_self_attention_kv=self.config.extract_self_attention_kv,
|
261 |
-
extract_cross_attention_kv=self.config.extract_cross_attention_kv,
|
262 |
-
)
|
263 |
-
for _ in range(self.config.num_layers)
|
264 |
-
]
|
265 |
-
)
|
266 |
-
|
267 |
-
self.norm_out = nn.LayerNorm(self.inner_dim)
|
268 |
-
self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1)
|
269 |
-
|
270 |
-
def _init_patched_inputs(self, norm_type):
|
271 |
-
assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
272 |
-
|
273 |
-
self.height = self.config.sample_size
|
274 |
-
self.width = self.config.sample_size
|
275 |
-
|
276 |
-
self.patch_size = self.config.patch_size
|
277 |
-
interpolation_scale = (
|
278 |
-
self.config.interpolation_scale
|
279 |
-
if self.config.interpolation_scale is not None
|
280 |
-
else max(self.config.sample_size // 64, 1)
|
281 |
-
)
|
282 |
-
self.pos_embed = PatchEmbed(
|
283 |
-
height=self.config.sample_size,
|
284 |
-
width=self.config.sample_size,
|
285 |
-
patch_size=self.config.patch_size,
|
286 |
-
in_channels=self.in_channels,
|
287 |
-
embed_dim=self.inner_dim,
|
288 |
-
interpolation_scale=interpolation_scale,
|
289 |
-
)
|
290 |
-
|
291 |
-
self.transformer_blocks = nn.ModuleList(
|
292 |
-
[
|
293 |
-
ExtractKVTransformerBlock(
|
294 |
-
self.inner_dim,
|
295 |
-
self.config.num_attention_heads,
|
296 |
-
self.config.attention_head_dim,
|
297 |
-
dropout=self.config.dropout,
|
298 |
-
cross_attention_dim=self.config.cross_attention_dim,
|
299 |
-
activation_fn=self.config.activation_fn,
|
300 |
-
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
301 |
-
attention_bias=self.config.attention_bias,
|
302 |
-
only_cross_attention=self.config.only_cross_attention,
|
303 |
-
double_self_attention=self.config.double_self_attention,
|
304 |
-
upcast_attention=self.config.upcast_attention,
|
305 |
-
norm_type=norm_type,
|
306 |
-
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
307 |
-
norm_eps=self.config.norm_eps,
|
308 |
-
attention_type=self.config.attention_type,
|
309 |
-
extract_self_attention_kv=self.config.extract_self_attention_kv,
|
310 |
-
extract_cross_attention_kv=self.config.extract_cross_attention_kv,
|
311 |
-
)
|
312 |
-
for _ in range(self.config.num_layers)
|
313 |
-
]
|
314 |
-
)
|
315 |
-
|
316 |
-
if self.config.norm_type != "ada_norm_single":
|
317 |
-
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
318 |
-
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
319 |
-
self.proj_out_2 = nn.Linear(
|
320 |
-
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
321 |
-
)
|
322 |
-
elif self.config.norm_type == "ada_norm_single":
|
323 |
-
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
324 |
-
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
325 |
-
self.proj_out = nn.Linear(
|
326 |
-
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
327 |
-
)
|
328 |
-
|
329 |
-
# PixArt-Alpha blocks.
|
330 |
-
self.adaln_single = None
|
331 |
-
if self.config.norm_type == "ada_norm_single":
|
332 |
-
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
333 |
-
# additional conditions until we find better name
|
334 |
-
self.adaln_single = AdaLayerNormSingle(
|
335 |
-
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
336 |
-
)
|
337 |
-
|
338 |
-
self.caption_projection = None
|
339 |
-
if self.caption_channels is not None:
|
340 |
-
self.caption_projection = PixArtAlphaTextProjection(
|
341 |
-
in_features=self.caption_channels, hidden_size=self.inner_dim
|
342 |
-
)
|
343 |
-
|
344 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
345 |
-
if hasattr(module, "gradient_checkpointing"):
|
346 |
-
module.gradient_checkpointing = value
|
347 |
-
|
348 |
-
def forward(
|
349 |
-
self,
|
350 |
-
hidden_states: torch.Tensor,
|
351 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
352 |
-
timestep: Optional[torch.LongTensor] = None,
|
353 |
-
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
354 |
-
class_labels: Optional[torch.LongTensor] = None,
|
355 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
356 |
-
attention_mask: Optional[torch.Tensor] = None,
|
357 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
358 |
-
return_dict: bool = True,
|
359 |
-
):
|
360 |
-
"""
|
361 |
-
The [`Transformer2DModel`] forward method.
|
362 |
-
|
363 |
-
Args:
|
364 |
-
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
365 |
-
Input `hidden_states`.
|
366 |
-
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
367 |
-
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
368 |
-
self-attention.
|
369 |
-
timestep ( `torch.LongTensor`, *optional*):
|
370 |
-
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
371 |
-
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
372 |
-
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
373 |
-
`AdaLayerZeroNorm`.
|
374 |
-
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
375 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
376 |
-
`self.processor` in
|
377 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
378 |
-
attention_mask ( `torch.Tensor`, *optional*):
|
379 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
380 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
381 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
382 |
-
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
383 |
-
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
384 |
-
|
385 |
-
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
386 |
-
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
387 |
-
|
388 |
-
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
389 |
-
above. This bias will be added to the cross-attention scores.
|
390 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
391 |
-
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
392 |
-
tuple.
|
393 |
-
|
394 |
-
Returns:
|
395 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
396 |
-
`tuple` where the first element is the sample tensor.
|
397 |
-
"""
|
398 |
-
if cross_attention_kwargs is not None:
|
399 |
-
if cross_attention_kwargs.get("scale", None) is not None:
|
400 |
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
401 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
402 |
-
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
403 |
-
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
404 |
-
# expects mask of shape:
|
405 |
-
# [batch, key_tokens]
|
406 |
-
# adds singleton query_tokens dimension:
|
407 |
-
# [batch, 1, key_tokens]
|
408 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
409 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
410 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
411 |
-
if attention_mask is not None and attention_mask.ndim == 2:
|
412 |
-
# assume that mask is expressed as:
|
413 |
-
# (1 = keep, 0 = discard)
|
414 |
-
# convert mask into a bias that can be added to attention scores:
|
415 |
-
# (keep = +0, discard = -10000.0)
|
416 |
-
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
417 |
-
attention_mask = attention_mask.unsqueeze(1)
|
418 |
-
|
419 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
420 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
421 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
422 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
423 |
-
|
424 |
-
# 1. Input
|
425 |
-
if self.is_input_continuous:
|
426 |
-
batch_size, _, height, width = hidden_states.shape
|
427 |
-
residual = hidden_states
|
428 |
-
hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
|
429 |
-
elif self.is_input_vectorized:
|
430 |
-
hidden_states = self.latent_image_embedding(hidden_states)
|
431 |
-
elif self.is_input_patches:
|
432 |
-
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
433 |
-
hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
|
434 |
-
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
|
435 |
-
)
|
436 |
-
|
437 |
-
# 2. Blocks
|
438 |
-
extracted_kvs = {}
|
439 |
-
for block in self.transformer_blocks:
|
440 |
-
if self.training and self.gradient_checkpointing:
|
441 |
-
|
442 |
-
def create_custom_forward(module, return_dict=None):
|
443 |
-
def custom_forward(*inputs):
|
444 |
-
if return_dict is not None:
|
445 |
-
return module(*inputs, return_dict=return_dict)
|
446 |
-
else:
|
447 |
-
return module(*inputs)
|
448 |
-
|
449 |
-
return custom_forward
|
450 |
-
|
451 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
452 |
-
hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint(
|
453 |
-
create_custom_forward(block),
|
454 |
-
hidden_states,
|
455 |
-
attention_mask,
|
456 |
-
encoder_hidden_states,
|
457 |
-
encoder_attention_mask,
|
458 |
-
timestep,
|
459 |
-
cross_attention_kwargs,
|
460 |
-
class_labels,
|
461 |
-
**ckpt_kwargs,
|
462 |
-
)
|
463 |
-
else:
|
464 |
-
hidden_states, extracted_kv = block(
|
465 |
-
hidden_states,
|
466 |
-
attention_mask=attention_mask,
|
467 |
-
encoder_hidden_states=encoder_hidden_states,
|
468 |
-
encoder_attention_mask=encoder_attention_mask,
|
469 |
-
timestep=timestep,
|
470 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
471 |
-
class_labels=class_labels,
|
472 |
-
)
|
473 |
-
|
474 |
-
if extracted_kv:
|
475 |
-
extracted_kvs[block.full_name] = extracted_kv
|
476 |
-
|
477 |
-
# 3. Output
|
478 |
-
if self.is_input_continuous:
|
479 |
-
output = self._get_output_for_continuous_inputs(
|
480 |
-
hidden_states=hidden_states,
|
481 |
-
residual=residual,
|
482 |
-
batch_size=batch_size,
|
483 |
-
height=height,
|
484 |
-
width=width,
|
485 |
-
inner_dim=inner_dim,
|
486 |
-
)
|
487 |
-
elif self.is_input_vectorized:
|
488 |
-
output = self._get_output_for_vectorized_inputs(hidden_states)
|
489 |
-
elif self.is_input_patches:
|
490 |
-
output = self._get_output_for_patched_inputs(
|
491 |
-
hidden_states=hidden_states,
|
492 |
-
timestep=timestep,
|
493 |
-
class_labels=class_labels,
|
494 |
-
embedded_timestep=embedded_timestep,
|
495 |
-
height=height,
|
496 |
-
width=width,
|
497 |
-
)
|
498 |
-
|
499 |
-
if not return_dict:
|
500 |
-
return (output, extracted_kvs)
|
501 |
-
|
502 |
-
return ExtractKVTransformer2DModelOutput(sample=output, cached_kvs=extracted_kvs)
|
503 |
-
|
504 |
-
def init_kv_extraction(self):
|
505 |
-
for block in self.transformer_blocks:
|
506 |
-
block.init_kv_extraction()
|
507 |
-
|
508 |
-
def _operate_on_continuous_inputs(self, hidden_states):
|
509 |
-
batch, _, height, width = hidden_states.shape
|
510 |
-
hidden_states = self.norm(hidden_states)
|
511 |
-
|
512 |
-
if not self.use_linear_projection:
|
513 |
-
hidden_states = self.proj_in(hidden_states)
|
514 |
-
inner_dim = hidden_states.shape[1]
|
515 |
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
516 |
-
else:
|
517 |
-
inner_dim = hidden_states.shape[1]
|
518 |
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
519 |
-
hidden_states = self.proj_in(hidden_states)
|
520 |
-
|
521 |
-
return hidden_states, inner_dim
|
522 |
-
|
523 |
-
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs):
|
524 |
-
batch_size = hidden_states.shape[0]
|
525 |
-
hidden_states = self.pos_embed(hidden_states)
|
526 |
-
embedded_timestep = None
|
527 |
-
|
528 |
-
if self.adaln_single is not None:
|
529 |
-
if self.use_additional_conditions and added_cond_kwargs is None:
|
530 |
-
raise ValueError(
|
531 |
-
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
532 |
-
)
|
533 |
-
timestep, embedded_timestep = self.adaln_single(
|
534 |
-
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
535 |
-
)
|
536 |
-
|
537 |
-
if self.caption_projection is not None:
|
538 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
539 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
540 |
-
|
541 |
-
return hidden_states, encoder_hidden_states, timestep, embedded_timestep
|
542 |
-
|
543 |
-
def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim):
|
544 |
-
if not self.use_linear_projection:
|
545 |
-
hidden_states = (
|
546 |
-
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
547 |
-
)
|
548 |
-
hidden_states = self.proj_out(hidden_states)
|
549 |
-
else:
|
550 |
-
hidden_states = self.proj_out(hidden_states)
|
551 |
-
hidden_states = (
|
552 |
-
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
553 |
-
)
|
554 |
-
|
555 |
-
output = hidden_states + residual
|
556 |
-
return output
|
557 |
-
|
558 |
-
def _get_output_for_vectorized_inputs(self, hidden_states):
|
559 |
-
hidden_states = self.norm_out(hidden_states)
|
560 |
-
logits = self.out(hidden_states)
|
561 |
-
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
562 |
-
logits = logits.permute(0, 2, 1)
|
563 |
-
# log(p(x_0))
|
564 |
-
output = F.log_softmax(logits.double(), dim=1).float()
|
565 |
-
return output
|
566 |
-
|
567 |
-
def _get_output_for_patched_inputs(
|
568 |
-
self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None
|
569 |
-
):
|
570 |
-
if self.config.norm_type != "ada_norm_single":
|
571 |
-
conditioning = self.transformer_blocks[0].norm1.emb(
|
572 |
-
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
573 |
-
)
|
574 |
-
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
575 |
-
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
576 |
-
hidden_states = self.proj_out_2(hidden_states)
|
577 |
-
elif self.config.norm_type == "ada_norm_single":
|
578 |
-
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
579 |
-
hidden_states = self.norm_out(hidden_states)
|
580 |
-
# Modulation
|
581 |
-
hidden_states = hidden_states * (1 + scale) + shift
|
582 |
-
hidden_states = self.proj_out(hidden_states)
|
583 |
-
hidden_states = hidden_states.squeeze(1)
|
584 |
-
|
585 |
-
# unpatchify
|
586 |
-
if self.adaln_single is None:
|
587 |
-
height = width = int(hidden_states.shape[1] ** 0.5)
|
588 |
-
hidden_states = hidden_states.reshape(
|
589 |
-
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
590 |
-
)
|
591 |
-
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
592 |
-
output = hidden_states.reshape(
|
593 |
-
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
594 |
-
)
|
595 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module/unet/unet_2d_expandKV.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
# Copy from diffusers.models.unets.unet_2d_condition.py
|
2 |
-
|
3 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
-
|
18 |
-
import torch
|
19 |
-
|
20 |
-
from diffusers.utils import logging
|
21 |
-
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
22 |
-
|
23 |
-
|
24 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
25 |
-
|
26 |
-
|
27 |
-
class ExpandKVUNet2DConditionModel(UNet2DConditionModel):
|
28 |
-
r"""
|
29 |
-
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
30 |
-
shaped output.
|
31 |
-
|
32 |
-
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
33 |
-
for all models (such as downloading or saving).
|
34 |
-
|
35 |
-
Parameters:
|
36 |
-
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
37 |
-
Height and width of input/output sample.
|
38 |
-
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
39 |
-
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
40 |
-
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
41 |
-
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
42 |
-
Whether to flip the sin to cos in the time embedding.
|
43 |
-
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
44 |
-
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
45 |
-
The tuple of downsample blocks to use.
|
46 |
-
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
47 |
-
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
48 |
-
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
49 |
-
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
50 |
-
The tuple of upsample blocks to use.
|
51 |
-
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
52 |
-
Whether to include self-attention in the basic transformer blocks, see
|
53 |
-
[`~models.attention.BasicTransformerBlock`].
|
54 |
-
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
55 |
-
The tuple of output channels for each block.
|
56 |
-
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
57 |
-
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
58 |
-
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
59 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
60 |
-
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
61 |
-
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
62 |
-
If `None`, normalization and activation layers is skipped in post-processing.
|
63 |
-
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
64 |
-
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
65 |
-
The dimension of the cross attention features.
|
66 |
-
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
67 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
68 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
69 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
70 |
-
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
71 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
72 |
-
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
73 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
74 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
75 |
-
encoder_hid_dim (`int`, *optional*, defaults to None):
|
76 |
-
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
77 |
-
dimension to `cross_attention_dim`.
|
78 |
-
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
79 |
-
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
80 |
-
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
81 |
-
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
82 |
-
num_attention_heads (`int`, *optional*):
|
83 |
-
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
84 |
-
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
85 |
-
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
86 |
-
class_embed_type (`str`, *optional*, defaults to `None`):
|
87 |
-
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
88 |
-
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
89 |
-
addition_embed_type (`str`, *optional*, defaults to `None`):
|
90 |
-
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
91 |
-
"text". "text" will use the `TextTimeEmbedding` layer.
|
92 |
-
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
93 |
-
Dimension for the timestep embeddings.
|
94 |
-
num_class_embeds (`int`, *optional*, defaults to `None`):
|
95 |
-
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
96 |
-
class conditioning with `class_embed_type` equal to `None`.
|
97 |
-
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
98 |
-
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
99 |
-
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
100 |
-
An optional override for the dimension of the projected time embedding.
|
101 |
-
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
102 |
-
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
103 |
-
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
104 |
-
timestep_post_act (`str`, *optional*, defaults to `None`):
|
105 |
-
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
106 |
-
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
107 |
-
The dimension of `cond_proj` layer in the timestep embedding.
|
108 |
-
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
109 |
-
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
110 |
-
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
111 |
-
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
112 |
-
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
113 |
-
embeddings with the class embeddings.
|
114 |
-
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
115 |
-
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
116 |
-
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
117 |
-
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
118 |
-
otherwise.
|
119 |
-
"""
|
120 |
-
|
121 |
-
|
122 |
-
def process_encoder_hidden_states(
|
123 |
-
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
124 |
-
) -> torch.Tensor:
|
125 |
-
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
126 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
127 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
128 |
-
# Kandinsky 2.1 - style
|
129 |
-
if "image_embeds" not in added_cond_kwargs:
|
130 |
-
raise ValueError(
|
131 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
132 |
-
)
|
133 |
-
|
134 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
135 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
136 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
137 |
-
# Kandinsky 2.2 - style
|
138 |
-
if "image_embeds" not in added_cond_kwargs:
|
139 |
-
raise ValueError(
|
140 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
141 |
-
)
|
142 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
143 |
-
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
144 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
145 |
-
if "image_embeds" not in added_cond_kwargs:
|
146 |
-
raise ValueError(
|
147 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
148 |
-
)
|
149 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
150 |
-
image_embeds = self.encoder_hid_proj(image_embeds)
|
151 |
-
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
152 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "instantir":
|
153 |
-
if "image_embeds" not in added_cond_kwargs:
|
154 |
-
raise ValueError(
|
155 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
156 |
-
)
|
157 |
-
if "extract_kvs" not in added_cond_kwargs:
|
158 |
-
raise ValueError(
|
159 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
160 |
-
)
|
161 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
162 |
-
image_embeds = self.encoder_hid_proj(image_embeds)
|
163 |
-
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
164 |
-
return encoder_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module/unet/unet_2d_extractKV.py
DELETED
@@ -1,1347 +0,0 @@
|
|
1 |
-
# Copy from diffusers.models.unets.unet_2d_condition.py
|
2 |
-
|
3 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn as nn
|
21 |
-
import torch.utils.checkpoint
|
22 |
-
|
23 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
-
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
25 |
-
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
26 |
-
from diffusers.models.activations import get_activation
|
27 |
-
from diffusers.models.attention_processor import (
|
28 |
-
ADDED_KV_ATTENTION_PROCESSORS,
|
29 |
-
CROSS_ATTENTION_PROCESSORS,
|
30 |
-
Attention,
|
31 |
-
AttentionProcessor,
|
32 |
-
AttnAddedKVProcessor,
|
33 |
-
AttnProcessor,
|
34 |
-
)
|
35 |
-
from diffusers.models.embeddings import (
|
36 |
-
GaussianFourierProjection,
|
37 |
-
GLIGENTextBoundingboxProjection,
|
38 |
-
ImageHintTimeEmbedding,
|
39 |
-
ImageProjection,
|
40 |
-
ImageTimeEmbedding,
|
41 |
-
TextImageProjection,
|
42 |
-
TextImageTimeEmbedding,
|
43 |
-
TextTimeEmbedding,
|
44 |
-
TimestepEmbedding,
|
45 |
-
Timesteps,
|
46 |
-
)
|
47 |
-
from diffusers.models.modeling_utils import ModelMixin
|
48 |
-
from .unet_2d_extractKV_blocks import (
|
49 |
-
get_down_block,
|
50 |
-
get_mid_block,
|
51 |
-
get_up_block,
|
52 |
-
)
|
53 |
-
|
54 |
-
|
55 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
-
|
57 |
-
|
58 |
-
@dataclass
|
59 |
-
class ExtractKVUNet2DConditionOutput(BaseOutput):
|
60 |
-
"""
|
61 |
-
The output of [`UNet2DConditionModel`].
|
62 |
-
|
63 |
-
Args:
|
64 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
65 |
-
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
66 |
-
"""
|
67 |
-
|
68 |
-
sample: torch.FloatTensor = None
|
69 |
-
cached_kvs: Dict[str, Any] = None
|
70 |
-
|
71 |
-
|
72 |
-
class ExtractKVUNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
|
73 |
-
r"""
|
74 |
-
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
75 |
-
shaped output.
|
76 |
-
|
77 |
-
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
78 |
-
for all models (such as downloading or saving).
|
79 |
-
|
80 |
-
Parameters:
|
81 |
-
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
82 |
-
Height and width of input/output sample.
|
83 |
-
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
84 |
-
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
85 |
-
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
86 |
-
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
87 |
-
Whether to flip the sin to cos in the time embedding.
|
88 |
-
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
89 |
-
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
90 |
-
The tuple of downsample blocks to use.
|
91 |
-
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
92 |
-
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
93 |
-
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
94 |
-
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
95 |
-
The tuple of upsample blocks to use.
|
96 |
-
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
97 |
-
Whether to include self-attention in the basic transformer blocks, see
|
98 |
-
[`~models.attention.BasicTransformerBlock`].
|
99 |
-
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
100 |
-
The tuple of output channels for each block.
|
101 |
-
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
102 |
-
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
103 |
-
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
104 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
105 |
-
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
106 |
-
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
107 |
-
If `None`, normalization and activation layers is skipped in post-processing.
|
108 |
-
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
109 |
-
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
110 |
-
The dimension of the cross attention features.
|
111 |
-
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
112 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
113 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
114 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
115 |
-
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
116 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
117 |
-
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
118 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
119 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
120 |
-
encoder_hid_dim (`int`, *optional*, defaults to None):
|
121 |
-
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
122 |
-
dimension to `cross_attention_dim`.
|
123 |
-
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
124 |
-
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
125 |
-
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
126 |
-
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
127 |
-
num_attention_heads (`int`, *optional*):
|
128 |
-
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
129 |
-
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
130 |
-
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
131 |
-
class_embed_type (`str`, *optional*, defaults to `None`):
|
132 |
-
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
133 |
-
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
134 |
-
addition_embed_type (`str`, *optional*, defaults to `None`):
|
135 |
-
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
136 |
-
"text". "text" will use the `TextTimeEmbedding` layer.
|
137 |
-
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
138 |
-
Dimension for the timestep embeddings.
|
139 |
-
num_class_embeds (`int`, *optional*, defaults to `None`):
|
140 |
-
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
141 |
-
class conditioning with `class_embed_type` equal to `None`.
|
142 |
-
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
143 |
-
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
144 |
-
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
145 |
-
An optional override for the dimension of the projected time embedding.
|
146 |
-
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
147 |
-
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
148 |
-
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
149 |
-
timestep_post_act (`str`, *optional*, defaults to `None`):
|
150 |
-
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
151 |
-
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
152 |
-
The dimension of `cond_proj` layer in the timestep embedding.
|
153 |
-
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
154 |
-
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
155 |
-
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
156 |
-
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
157 |
-
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
158 |
-
embeddings with the class embeddings.
|
159 |
-
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
160 |
-
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
161 |
-
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
162 |
-
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
163 |
-
otherwise.
|
164 |
-
"""
|
165 |
-
|
166 |
-
_supports_gradient_checkpointing = True
|
167 |
-
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
|
168 |
-
|
169 |
-
@register_to_config
|
170 |
-
def __init__(
|
171 |
-
self,
|
172 |
-
sample_size: Optional[int] = None,
|
173 |
-
in_channels: int = 4,
|
174 |
-
out_channels: int = 4,
|
175 |
-
center_input_sample: bool = False,
|
176 |
-
flip_sin_to_cos: bool = True,
|
177 |
-
freq_shift: int = 0,
|
178 |
-
down_block_types: Tuple[str] = (
|
179 |
-
"CrossAttnDownBlock2D",
|
180 |
-
"CrossAttnDownBlock2D",
|
181 |
-
"CrossAttnDownBlock2D",
|
182 |
-
"DownBlock2D",
|
183 |
-
),
|
184 |
-
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
185 |
-
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
186 |
-
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
187 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
188 |
-
layers_per_block: Union[int, Tuple[int]] = 2,
|
189 |
-
downsample_padding: int = 1,
|
190 |
-
mid_block_scale_factor: float = 1,
|
191 |
-
dropout: float = 0.0,
|
192 |
-
act_fn: str = "silu",
|
193 |
-
norm_num_groups: Optional[int] = 32,
|
194 |
-
norm_eps: float = 1e-5,
|
195 |
-
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
196 |
-
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
197 |
-
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
198 |
-
encoder_hid_dim: Optional[int] = None,
|
199 |
-
encoder_hid_dim_type: Optional[str] = None,
|
200 |
-
attention_head_dim: Union[int, Tuple[int]] = 8,
|
201 |
-
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
202 |
-
dual_cross_attention: bool = False,
|
203 |
-
use_linear_projection: bool = False,
|
204 |
-
class_embed_type: Optional[str] = None,
|
205 |
-
addition_embed_type: Optional[str] = None,
|
206 |
-
addition_time_embed_dim: Optional[int] = None,
|
207 |
-
num_class_embeds: Optional[int] = None,
|
208 |
-
upcast_attention: bool = False,
|
209 |
-
resnet_time_scale_shift: str = "default",
|
210 |
-
resnet_skip_time_act: bool = False,
|
211 |
-
resnet_out_scale_factor: float = 1.0,
|
212 |
-
time_embedding_type: str = "positional",
|
213 |
-
time_embedding_dim: Optional[int] = None,
|
214 |
-
time_embedding_act_fn: Optional[str] = None,
|
215 |
-
timestep_post_act: Optional[str] = None,
|
216 |
-
time_cond_proj_dim: Optional[int] = None,
|
217 |
-
conv_in_kernel: int = 3,
|
218 |
-
conv_out_kernel: int = 3,
|
219 |
-
projection_class_embeddings_input_dim: Optional[int] = None,
|
220 |
-
attention_type: str = "default",
|
221 |
-
class_embeddings_concat: bool = False,
|
222 |
-
mid_block_only_cross_attention: Optional[bool] = None,
|
223 |
-
cross_attention_norm: Optional[str] = None,
|
224 |
-
addition_embed_type_num_heads: int = 64,
|
225 |
-
extract_self_attention_kv: bool = False,
|
226 |
-
extract_cross_attention_kv: bool = False,
|
227 |
-
):
|
228 |
-
super().__init__()
|
229 |
-
|
230 |
-
self.sample_size = sample_size
|
231 |
-
|
232 |
-
if num_attention_heads is not None:
|
233 |
-
raise ValueError(
|
234 |
-
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
235 |
-
)
|
236 |
-
|
237 |
-
# If `num_attention_heads` is not defined (which is the case for most models)
|
238 |
-
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
239 |
-
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
240 |
-
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
241 |
-
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
242 |
-
# which is why we correct for the naming here.
|
243 |
-
num_attention_heads = num_attention_heads or attention_head_dim
|
244 |
-
|
245 |
-
# Check inputs
|
246 |
-
self._check_config(
|
247 |
-
down_block_types=down_block_types,
|
248 |
-
up_block_types=up_block_types,
|
249 |
-
only_cross_attention=only_cross_attention,
|
250 |
-
block_out_channels=block_out_channels,
|
251 |
-
layers_per_block=layers_per_block,
|
252 |
-
cross_attention_dim=cross_attention_dim,
|
253 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
254 |
-
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
255 |
-
attention_head_dim=attention_head_dim,
|
256 |
-
num_attention_heads=num_attention_heads,
|
257 |
-
)
|
258 |
-
|
259 |
-
# input
|
260 |
-
conv_in_padding = (conv_in_kernel - 1) // 2
|
261 |
-
self.conv_in = nn.Conv2d(
|
262 |
-
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
263 |
-
)
|
264 |
-
|
265 |
-
# time
|
266 |
-
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
267 |
-
time_embedding_type,
|
268 |
-
block_out_channels=block_out_channels,
|
269 |
-
flip_sin_to_cos=flip_sin_to_cos,
|
270 |
-
freq_shift=freq_shift,
|
271 |
-
time_embedding_dim=time_embedding_dim,
|
272 |
-
)
|
273 |
-
|
274 |
-
self.time_embedding = TimestepEmbedding(
|
275 |
-
timestep_input_dim,
|
276 |
-
time_embed_dim,
|
277 |
-
act_fn=act_fn,
|
278 |
-
post_act_fn=timestep_post_act,
|
279 |
-
cond_proj_dim=time_cond_proj_dim,
|
280 |
-
)
|
281 |
-
|
282 |
-
self._set_encoder_hid_proj(
|
283 |
-
encoder_hid_dim_type,
|
284 |
-
cross_attention_dim=cross_attention_dim,
|
285 |
-
encoder_hid_dim=encoder_hid_dim,
|
286 |
-
)
|
287 |
-
|
288 |
-
# class embedding
|
289 |
-
self._set_class_embedding(
|
290 |
-
class_embed_type,
|
291 |
-
act_fn=act_fn,
|
292 |
-
num_class_embeds=num_class_embeds,
|
293 |
-
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
294 |
-
time_embed_dim=time_embed_dim,
|
295 |
-
timestep_input_dim=timestep_input_dim,
|
296 |
-
)
|
297 |
-
|
298 |
-
self._set_add_embedding(
|
299 |
-
addition_embed_type,
|
300 |
-
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
301 |
-
addition_time_embed_dim=addition_time_embed_dim,
|
302 |
-
cross_attention_dim=cross_attention_dim,
|
303 |
-
encoder_hid_dim=encoder_hid_dim,
|
304 |
-
flip_sin_to_cos=flip_sin_to_cos,
|
305 |
-
freq_shift=freq_shift,
|
306 |
-
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
307 |
-
time_embed_dim=time_embed_dim,
|
308 |
-
)
|
309 |
-
|
310 |
-
if time_embedding_act_fn is None:
|
311 |
-
self.time_embed_act = None
|
312 |
-
else:
|
313 |
-
self.time_embed_act = get_activation(time_embedding_act_fn)
|
314 |
-
|
315 |
-
self.down_blocks = nn.ModuleList([])
|
316 |
-
self.up_blocks = nn.ModuleList([])
|
317 |
-
|
318 |
-
if isinstance(only_cross_attention, bool):
|
319 |
-
if mid_block_only_cross_attention is None:
|
320 |
-
mid_block_only_cross_attention = only_cross_attention
|
321 |
-
|
322 |
-
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
323 |
-
|
324 |
-
if mid_block_only_cross_attention is None:
|
325 |
-
mid_block_only_cross_attention = False
|
326 |
-
|
327 |
-
if isinstance(num_attention_heads, int):
|
328 |
-
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
329 |
-
|
330 |
-
if isinstance(attention_head_dim, int):
|
331 |
-
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
332 |
-
|
333 |
-
if isinstance(cross_attention_dim, int):
|
334 |
-
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
335 |
-
|
336 |
-
if isinstance(layers_per_block, int):
|
337 |
-
layers_per_block = [layers_per_block] * len(down_block_types)
|
338 |
-
|
339 |
-
if isinstance(transformer_layers_per_block, int):
|
340 |
-
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
341 |
-
|
342 |
-
if class_embeddings_concat:
|
343 |
-
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
344 |
-
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
345 |
-
# regular time embeddings
|
346 |
-
blocks_time_embed_dim = time_embed_dim * 2
|
347 |
-
else:
|
348 |
-
blocks_time_embed_dim = time_embed_dim
|
349 |
-
|
350 |
-
# down
|
351 |
-
output_channel = block_out_channels[0]
|
352 |
-
for i, down_block_type in enumerate(down_block_types):
|
353 |
-
input_channel = output_channel
|
354 |
-
output_channel = block_out_channels[i]
|
355 |
-
is_final_block = i == len(block_out_channels) - 1
|
356 |
-
|
357 |
-
down_block = get_down_block(
|
358 |
-
down_block_type,
|
359 |
-
num_layers=layers_per_block[i],
|
360 |
-
transformer_layers_per_block=transformer_layers_per_block[i],
|
361 |
-
in_channels=input_channel,
|
362 |
-
out_channels=output_channel,
|
363 |
-
temb_channels=blocks_time_embed_dim,
|
364 |
-
add_downsample=not is_final_block,
|
365 |
-
resnet_eps=norm_eps,
|
366 |
-
resnet_act_fn=act_fn,
|
367 |
-
resnet_groups=norm_num_groups,
|
368 |
-
cross_attention_dim=cross_attention_dim[i],
|
369 |
-
num_attention_heads=num_attention_heads[i],
|
370 |
-
downsample_padding=downsample_padding,
|
371 |
-
dual_cross_attention=dual_cross_attention,
|
372 |
-
use_linear_projection=use_linear_projection,
|
373 |
-
only_cross_attention=only_cross_attention[i],
|
374 |
-
upcast_attention=upcast_attention,
|
375 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
376 |
-
attention_type=attention_type,
|
377 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
378 |
-
resnet_out_scale_factor=resnet_out_scale_factor,
|
379 |
-
cross_attention_norm=cross_attention_norm,
|
380 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
381 |
-
dropout=dropout,
|
382 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
383 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
384 |
-
)
|
385 |
-
self.down_blocks.append(down_block)
|
386 |
-
|
387 |
-
# mid
|
388 |
-
self.mid_block = get_mid_block(
|
389 |
-
mid_block_type,
|
390 |
-
temb_channels=blocks_time_embed_dim,
|
391 |
-
in_channels=block_out_channels[-1],
|
392 |
-
resnet_eps=norm_eps,
|
393 |
-
resnet_act_fn=act_fn,
|
394 |
-
resnet_groups=norm_num_groups,
|
395 |
-
output_scale_factor=mid_block_scale_factor,
|
396 |
-
transformer_layers_per_block=transformer_layers_per_block[-1],
|
397 |
-
num_attention_heads=num_attention_heads[-1],
|
398 |
-
cross_attention_dim=cross_attention_dim[-1],
|
399 |
-
dual_cross_attention=dual_cross_attention,
|
400 |
-
use_linear_projection=use_linear_projection,
|
401 |
-
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
402 |
-
upcast_attention=upcast_attention,
|
403 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
404 |
-
attention_type=attention_type,
|
405 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
406 |
-
cross_attention_norm=cross_attention_norm,
|
407 |
-
attention_head_dim=attention_head_dim[-1],
|
408 |
-
dropout=dropout,
|
409 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
410 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
411 |
-
)
|
412 |
-
|
413 |
-
# count how many layers upsample the images
|
414 |
-
self.num_upsamplers = 0
|
415 |
-
|
416 |
-
# up
|
417 |
-
reversed_block_out_channels = list(reversed(block_out_channels))
|
418 |
-
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
419 |
-
reversed_layers_per_block = list(reversed(layers_per_block))
|
420 |
-
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
421 |
-
reversed_transformer_layers_per_block = (
|
422 |
-
list(reversed(transformer_layers_per_block))
|
423 |
-
if reverse_transformer_layers_per_block is None
|
424 |
-
else reverse_transformer_layers_per_block
|
425 |
-
)
|
426 |
-
only_cross_attention = list(reversed(only_cross_attention))
|
427 |
-
|
428 |
-
output_channel = reversed_block_out_channels[0]
|
429 |
-
for i, up_block_type in enumerate(up_block_types):
|
430 |
-
is_final_block = i == len(block_out_channels) - 1
|
431 |
-
|
432 |
-
prev_output_channel = output_channel
|
433 |
-
output_channel = reversed_block_out_channels[i]
|
434 |
-
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
435 |
-
|
436 |
-
# add upsample block for all BUT final layer
|
437 |
-
if not is_final_block:
|
438 |
-
add_upsample = True
|
439 |
-
self.num_upsamplers += 1
|
440 |
-
else:
|
441 |
-
add_upsample = False
|
442 |
-
|
443 |
-
up_block = get_up_block(
|
444 |
-
up_block_type,
|
445 |
-
num_layers=reversed_layers_per_block[i] + 1,
|
446 |
-
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
447 |
-
in_channels=input_channel,
|
448 |
-
out_channels=output_channel,
|
449 |
-
prev_output_channel=prev_output_channel,
|
450 |
-
temb_channels=blocks_time_embed_dim,
|
451 |
-
add_upsample=add_upsample,
|
452 |
-
resnet_eps=norm_eps,
|
453 |
-
resnet_act_fn=act_fn,
|
454 |
-
resolution_idx=i,
|
455 |
-
resnet_groups=norm_num_groups,
|
456 |
-
cross_attention_dim=reversed_cross_attention_dim[i],
|
457 |
-
num_attention_heads=reversed_num_attention_heads[i],
|
458 |
-
dual_cross_attention=dual_cross_attention,
|
459 |
-
use_linear_projection=use_linear_projection,
|
460 |
-
only_cross_attention=only_cross_attention[i],
|
461 |
-
upcast_attention=upcast_attention,
|
462 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
463 |
-
attention_type=attention_type,
|
464 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
465 |
-
resnet_out_scale_factor=resnet_out_scale_factor,
|
466 |
-
cross_attention_norm=cross_attention_norm,
|
467 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
468 |
-
dropout=dropout,
|
469 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
470 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
471 |
-
)
|
472 |
-
self.up_blocks.append(up_block)
|
473 |
-
prev_output_channel = output_channel
|
474 |
-
|
475 |
-
# out
|
476 |
-
if norm_num_groups is not None:
|
477 |
-
self.conv_norm_out = nn.GroupNorm(
|
478 |
-
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
479 |
-
)
|
480 |
-
|
481 |
-
self.conv_act = get_activation(act_fn)
|
482 |
-
|
483 |
-
else:
|
484 |
-
self.conv_norm_out = None
|
485 |
-
self.conv_act = None
|
486 |
-
|
487 |
-
conv_out_padding = (conv_out_kernel - 1) // 2
|
488 |
-
self.conv_out = nn.Conv2d(
|
489 |
-
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
490 |
-
)
|
491 |
-
|
492 |
-
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
493 |
-
|
494 |
-
def _check_config(
|
495 |
-
self,
|
496 |
-
down_block_types: Tuple[str],
|
497 |
-
up_block_types: Tuple[str],
|
498 |
-
only_cross_attention: Union[bool, Tuple[bool]],
|
499 |
-
block_out_channels: Tuple[int],
|
500 |
-
layers_per_block: Union[int, Tuple[int]],
|
501 |
-
cross_attention_dim: Union[int, Tuple[int]],
|
502 |
-
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
503 |
-
reverse_transformer_layers_per_block: bool,
|
504 |
-
attention_head_dim: int,
|
505 |
-
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
506 |
-
):
|
507 |
-
assert "ExtractKVCrossAttnDownBlock2D" in down_block_types, "ExtractKVUNet must have ExtractKVCrossAttnDownBlock2D."
|
508 |
-
assert "ExtractKVCrossAttnUpBlock2D" in up_block_types, "ExtractKVUNet must have ExtractKVCrossAttnUpBlock2D."
|
509 |
-
|
510 |
-
if len(down_block_types) != len(up_block_types):
|
511 |
-
raise ValueError(
|
512 |
-
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
513 |
-
)
|
514 |
-
|
515 |
-
if len(block_out_channels) != len(down_block_types):
|
516 |
-
raise ValueError(
|
517 |
-
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
518 |
-
)
|
519 |
-
|
520 |
-
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
521 |
-
raise ValueError(
|
522 |
-
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
523 |
-
)
|
524 |
-
|
525 |
-
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
526 |
-
raise ValueError(
|
527 |
-
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
528 |
-
)
|
529 |
-
|
530 |
-
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
531 |
-
raise ValueError(
|
532 |
-
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
533 |
-
)
|
534 |
-
|
535 |
-
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
536 |
-
raise ValueError(
|
537 |
-
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
538 |
-
)
|
539 |
-
|
540 |
-
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
541 |
-
raise ValueError(
|
542 |
-
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
543 |
-
)
|
544 |
-
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
545 |
-
for layer_number_per_block in transformer_layers_per_block:
|
546 |
-
if isinstance(layer_number_per_block, list):
|
547 |
-
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
548 |
-
|
549 |
-
def _set_time_proj(
|
550 |
-
self,
|
551 |
-
time_embedding_type: str,
|
552 |
-
block_out_channels: int,
|
553 |
-
flip_sin_to_cos: bool,
|
554 |
-
freq_shift: float,
|
555 |
-
time_embedding_dim: int,
|
556 |
-
) -> Tuple[int, int]:
|
557 |
-
if time_embedding_type == "fourier":
|
558 |
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
559 |
-
if time_embed_dim % 2 != 0:
|
560 |
-
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
561 |
-
self.time_proj = GaussianFourierProjection(
|
562 |
-
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
563 |
-
)
|
564 |
-
timestep_input_dim = time_embed_dim
|
565 |
-
elif time_embedding_type == "positional":
|
566 |
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
567 |
-
|
568 |
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
569 |
-
timestep_input_dim = block_out_channels[0]
|
570 |
-
else:
|
571 |
-
raise ValueError(
|
572 |
-
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
573 |
-
)
|
574 |
-
|
575 |
-
return time_embed_dim, timestep_input_dim
|
576 |
-
|
577 |
-
def _set_encoder_hid_proj(
|
578 |
-
self,
|
579 |
-
encoder_hid_dim_type: Optional[str],
|
580 |
-
cross_attention_dim: Union[int, Tuple[int]],
|
581 |
-
encoder_hid_dim: Optional[int],
|
582 |
-
):
|
583 |
-
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
584 |
-
encoder_hid_dim_type = "text_proj"
|
585 |
-
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
586 |
-
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
587 |
-
|
588 |
-
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
589 |
-
raise ValueError(
|
590 |
-
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
591 |
-
)
|
592 |
-
|
593 |
-
if encoder_hid_dim_type == "text_proj":
|
594 |
-
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
595 |
-
elif encoder_hid_dim_type == "text_image_proj":
|
596 |
-
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
597 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
598 |
-
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
599 |
-
self.encoder_hid_proj = TextImageProjection(
|
600 |
-
text_embed_dim=encoder_hid_dim,
|
601 |
-
image_embed_dim=cross_attention_dim,
|
602 |
-
cross_attention_dim=cross_attention_dim,
|
603 |
-
)
|
604 |
-
elif encoder_hid_dim_type == "image_proj":
|
605 |
-
# Kandinsky 2.2
|
606 |
-
self.encoder_hid_proj = ImageProjection(
|
607 |
-
image_embed_dim=encoder_hid_dim,
|
608 |
-
cross_attention_dim=cross_attention_dim,
|
609 |
-
)
|
610 |
-
elif encoder_hid_dim_type is not None:
|
611 |
-
raise ValueError(
|
612 |
-
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
613 |
-
)
|
614 |
-
else:
|
615 |
-
self.encoder_hid_proj = None
|
616 |
-
|
617 |
-
def _set_class_embedding(
|
618 |
-
self,
|
619 |
-
class_embed_type: Optional[str],
|
620 |
-
act_fn: str,
|
621 |
-
num_class_embeds: Optional[int],
|
622 |
-
projection_class_embeddings_input_dim: Optional[int],
|
623 |
-
time_embed_dim: int,
|
624 |
-
timestep_input_dim: int,
|
625 |
-
):
|
626 |
-
if class_embed_type is None and num_class_embeds is not None:
|
627 |
-
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
628 |
-
elif class_embed_type == "timestep":
|
629 |
-
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
630 |
-
elif class_embed_type == "identity":
|
631 |
-
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
632 |
-
elif class_embed_type == "projection":
|
633 |
-
if projection_class_embeddings_input_dim is None:
|
634 |
-
raise ValueError(
|
635 |
-
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
636 |
-
)
|
637 |
-
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
638 |
-
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
639 |
-
# 2. it projects from an arbitrary input dimension.
|
640 |
-
#
|
641 |
-
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
642 |
-
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
643 |
-
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
644 |
-
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
645 |
-
elif class_embed_type == "simple_projection":
|
646 |
-
if projection_class_embeddings_input_dim is None:
|
647 |
-
raise ValueError(
|
648 |
-
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
649 |
-
)
|
650 |
-
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
651 |
-
else:
|
652 |
-
self.class_embedding = None
|
653 |
-
|
654 |
-
def _set_add_embedding(
|
655 |
-
self,
|
656 |
-
addition_embed_type: str,
|
657 |
-
addition_embed_type_num_heads: int,
|
658 |
-
addition_time_embed_dim: Optional[int],
|
659 |
-
flip_sin_to_cos: bool,
|
660 |
-
freq_shift: float,
|
661 |
-
cross_attention_dim: Optional[int],
|
662 |
-
encoder_hid_dim: Optional[int],
|
663 |
-
projection_class_embeddings_input_dim: Optional[int],
|
664 |
-
time_embed_dim: int,
|
665 |
-
):
|
666 |
-
if addition_embed_type == "text":
|
667 |
-
if encoder_hid_dim is not None:
|
668 |
-
text_time_embedding_from_dim = encoder_hid_dim
|
669 |
-
else:
|
670 |
-
text_time_embedding_from_dim = cross_attention_dim
|
671 |
-
|
672 |
-
self.add_embedding = TextTimeEmbedding(
|
673 |
-
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
674 |
-
)
|
675 |
-
elif addition_embed_type == "text_image":
|
676 |
-
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
677 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
678 |
-
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
679 |
-
self.add_embedding = TextImageTimeEmbedding(
|
680 |
-
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
681 |
-
)
|
682 |
-
elif addition_embed_type == "text_time":
|
683 |
-
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
684 |
-
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
685 |
-
elif addition_embed_type == "image":
|
686 |
-
# Kandinsky 2.2
|
687 |
-
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
688 |
-
elif addition_embed_type == "image_hint":
|
689 |
-
# Kandinsky 2.2 ControlNet
|
690 |
-
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
691 |
-
elif addition_embed_type is not None:
|
692 |
-
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
693 |
-
|
694 |
-
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
695 |
-
if attention_type in ["gated", "gated-text-image"]:
|
696 |
-
positive_len = 768
|
697 |
-
if isinstance(cross_attention_dim, int):
|
698 |
-
positive_len = cross_attention_dim
|
699 |
-
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
700 |
-
positive_len = cross_attention_dim[0]
|
701 |
-
|
702 |
-
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
703 |
-
self.position_net = GLIGENTextBoundingboxProjection(
|
704 |
-
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
705 |
-
)
|
706 |
-
|
707 |
-
@property
|
708 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
709 |
-
r"""
|
710 |
-
Returns:
|
711 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
712 |
-
indexed by its weight name.
|
713 |
-
"""
|
714 |
-
# set recursively
|
715 |
-
processors = {}
|
716 |
-
|
717 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
718 |
-
if hasattr(module, "get_processor"):
|
719 |
-
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
720 |
-
|
721 |
-
for sub_name, child in module.named_children():
|
722 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
723 |
-
|
724 |
-
return processors
|
725 |
-
|
726 |
-
for name, module in self.named_children():
|
727 |
-
fn_recursive_add_processors(name, module, processors)
|
728 |
-
|
729 |
-
return processors
|
730 |
-
|
731 |
-
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
732 |
-
r"""
|
733 |
-
Sets the attention processor to use to compute attention.
|
734 |
-
|
735 |
-
Parameters:
|
736 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
737 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
738 |
-
for **all** `Attention` layers.
|
739 |
-
|
740 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
741 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
742 |
-
|
743 |
-
"""
|
744 |
-
count = len(self.attn_processors.keys())
|
745 |
-
|
746 |
-
if isinstance(processor, dict) and len(processor) != count:
|
747 |
-
raise ValueError(
|
748 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
749 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
750 |
-
)
|
751 |
-
|
752 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
753 |
-
if hasattr(module, "set_processor"):
|
754 |
-
if not isinstance(processor, dict):
|
755 |
-
module.set_processor(processor)
|
756 |
-
else:
|
757 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
758 |
-
|
759 |
-
for sub_name, child in module.named_children():
|
760 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
761 |
-
|
762 |
-
for name, module in self.named_children():
|
763 |
-
fn_recursive_attn_processor(name, module, processor)
|
764 |
-
|
765 |
-
def set_default_attn_processor(self):
|
766 |
-
"""
|
767 |
-
Disables custom attention processors and sets the default attention implementation.
|
768 |
-
"""
|
769 |
-
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
770 |
-
processor = AttnAddedKVProcessor()
|
771 |
-
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
772 |
-
processor = AttnProcessor()
|
773 |
-
else:
|
774 |
-
raise ValueError(
|
775 |
-
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
776 |
-
)
|
777 |
-
|
778 |
-
self.set_attn_processor(processor)
|
779 |
-
|
780 |
-
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
781 |
-
r"""
|
782 |
-
Enable sliced attention computation.
|
783 |
-
|
784 |
-
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
785 |
-
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
786 |
-
|
787 |
-
Args:
|
788 |
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
789 |
-
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
790 |
-
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
791 |
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
792 |
-
must be a multiple of `slice_size`.
|
793 |
-
"""
|
794 |
-
sliceable_head_dims = []
|
795 |
-
|
796 |
-
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
797 |
-
if hasattr(module, "set_attention_slice"):
|
798 |
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
799 |
-
|
800 |
-
for child in module.children():
|
801 |
-
fn_recursive_retrieve_sliceable_dims(child)
|
802 |
-
|
803 |
-
# retrieve number of attention layers
|
804 |
-
for module in self.children():
|
805 |
-
fn_recursive_retrieve_sliceable_dims(module)
|
806 |
-
|
807 |
-
num_sliceable_layers = len(sliceable_head_dims)
|
808 |
-
|
809 |
-
if slice_size == "auto":
|
810 |
-
# half the attention head size is usually a good trade-off between
|
811 |
-
# speed and memory
|
812 |
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
813 |
-
elif slice_size == "max":
|
814 |
-
# make smallest slice possible
|
815 |
-
slice_size = num_sliceable_layers * [1]
|
816 |
-
|
817 |
-
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
818 |
-
|
819 |
-
if len(slice_size) != len(sliceable_head_dims):
|
820 |
-
raise ValueError(
|
821 |
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
822 |
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
823 |
-
)
|
824 |
-
|
825 |
-
for i in range(len(slice_size)):
|
826 |
-
size = slice_size[i]
|
827 |
-
dim = sliceable_head_dims[i]
|
828 |
-
if size is not None and size > dim:
|
829 |
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
830 |
-
|
831 |
-
# Recursively walk through all the children.
|
832 |
-
# Any children which exposes the set_attention_slice method
|
833 |
-
# gets the message
|
834 |
-
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
835 |
-
if hasattr(module, "set_attention_slice"):
|
836 |
-
module.set_attention_slice(slice_size.pop())
|
837 |
-
|
838 |
-
for child in module.children():
|
839 |
-
fn_recursive_set_attention_slice(child, slice_size)
|
840 |
-
|
841 |
-
reversed_slice_size = list(reversed(slice_size))
|
842 |
-
for module in self.children():
|
843 |
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
844 |
-
|
845 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
846 |
-
if hasattr(module, "gradient_checkpointing"):
|
847 |
-
module.gradient_checkpointing = value
|
848 |
-
|
849 |
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
850 |
-
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
851 |
-
|
852 |
-
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
853 |
-
|
854 |
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
855 |
-
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
856 |
-
|
857 |
-
Args:
|
858 |
-
s1 (`float`):
|
859 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
860 |
-
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
861 |
-
s2 (`float`):
|
862 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
863 |
-
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
864 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
865 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
866 |
-
"""
|
867 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
868 |
-
setattr(upsample_block, "s1", s1)
|
869 |
-
setattr(upsample_block, "s2", s2)
|
870 |
-
setattr(upsample_block, "b1", b1)
|
871 |
-
setattr(upsample_block, "b2", b2)
|
872 |
-
|
873 |
-
def disable_freeu(self):
|
874 |
-
"""Disables the FreeU mechanism."""
|
875 |
-
freeu_keys = {"s1", "s2", "b1", "b2"}
|
876 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
877 |
-
for k in freeu_keys:
|
878 |
-
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
879 |
-
setattr(upsample_block, k, None)
|
880 |
-
|
881 |
-
def fuse_qkv_projections(self):
|
882 |
-
"""
|
883 |
-
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
884 |
-
are fused. For cross-attention modules, key and value projection matrices are fused.
|
885 |
-
|
886 |
-
<Tip warning={true}>
|
887 |
-
|
888 |
-
This API is 🧪 experimental.
|
889 |
-
|
890 |
-
</Tip>
|
891 |
-
"""
|
892 |
-
self.original_attn_processors = None
|
893 |
-
|
894 |
-
for _, attn_processor in self.attn_processors.items():
|
895 |
-
if "Added" in str(attn_processor.__class__.__name__):
|
896 |
-
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
897 |
-
|
898 |
-
self.original_attn_processors = self.attn_processors
|
899 |
-
|
900 |
-
for module in self.modules():
|
901 |
-
if isinstance(module, Attention):
|
902 |
-
module.fuse_projections(fuse=True)
|
903 |
-
|
904 |
-
def unfuse_qkv_projections(self):
|
905 |
-
"""Disables the fused QKV projection if enabled.
|
906 |
-
|
907 |
-
<Tip warning={true}>
|
908 |
-
|
909 |
-
This API is 🧪 experimental.
|
910 |
-
|
911 |
-
</Tip>
|
912 |
-
|
913 |
-
"""
|
914 |
-
if self.original_attn_processors is not None:
|
915 |
-
self.set_attn_processor(self.original_attn_processors)
|
916 |
-
|
917 |
-
def unload_lora(self):
|
918 |
-
"""Unloads LoRA weights."""
|
919 |
-
deprecate(
|
920 |
-
"unload_lora",
|
921 |
-
"0.28.0",
|
922 |
-
"Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
|
923 |
-
)
|
924 |
-
for module in self.modules():
|
925 |
-
if hasattr(module, "set_lora_layer"):
|
926 |
-
module.set_lora_layer(None)
|
927 |
-
|
928 |
-
def get_time_embed(
|
929 |
-
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
930 |
-
) -> Optional[torch.Tensor]:
|
931 |
-
timesteps = timestep
|
932 |
-
if not torch.is_tensor(timesteps):
|
933 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
934 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
935 |
-
is_mps = sample.device.type == "mps"
|
936 |
-
if isinstance(timestep, float):
|
937 |
-
dtype = torch.float32 if is_mps else torch.float64
|
938 |
-
else:
|
939 |
-
dtype = torch.int32 if is_mps else torch.int64
|
940 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
941 |
-
elif len(timesteps.shape) == 0:
|
942 |
-
timesteps = timesteps[None].to(sample.device)
|
943 |
-
|
944 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
945 |
-
timesteps = timesteps.expand(sample.shape[0])
|
946 |
-
|
947 |
-
t_emb = self.time_proj(timesteps)
|
948 |
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
949 |
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
950 |
-
# there might be better ways to encapsulate this.
|
951 |
-
t_emb = t_emb.to(dtype=sample.dtype)
|
952 |
-
return t_emb
|
953 |
-
|
954 |
-
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
955 |
-
class_emb = None
|
956 |
-
if self.class_embedding is not None:
|
957 |
-
if class_labels is None:
|
958 |
-
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
959 |
-
|
960 |
-
if self.config.class_embed_type == "timestep":
|
961 |
-
class_labels = self.time_proj(class_labels)
|
962 |
-
|
963 |
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
964 |
-
# there might be better ways to encapsulate this.
|
965 |
-
class_labels = class_labels.to(dtype=sample.dtype)
|
966 |
-
|
967 |
-
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
968 |
-
return class_emb
|
969 |
-
|
970 |
-
def get_aug_embed(
|
971 |
-
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
972 |
-
) -> Optional[torch.Tensor]:
|
973 |
-
aug_emb = None
|
974 |
-
if self.config.addition_embed_type == "text":
|
975 |
-
aug_emb = self.add_embedding(encoder_hidden_states)
|
976 |
-
elif self.config.addition_embed_type == "text_image":
|
977 |
-
# Kandinsky 2.1 - style
|
978 |
-
if "image_embeds" not in added_cond_kwargs:
|
979 |
-
raise ValueError(
|
980 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
981 |
-
)
|
982 |
-
|
983 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
984 |
-
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
985 |
-
aug_emb = self.add_embedding(text_embs, image_embs)
|
986 |
-
elif self.config.addition_embed_type == "text_time":
|
987 |
-
# SDXL - style
|
988 |
-
if "text_embeds" not in added_cond_kwargs:
|
989 |
-
raise ValueError(
|
990 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
991 |
-
)
|
992 |
-
text_embeds = added_cond_kwargs.get("text_embeds")
|
993 |
-
if "time_ids" not in added_cond_kwargs:
|
994 |
-
raise ValueError(
|
995 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
996 |
-
)
|
997 |
-
time_ids = added_cond_kwargs.get("time_ids")
|
998 |
-
time_embeds = self.add_time_proj(time_ids.flatten())
|
999 |
-
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1000 |
-
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1001 |
-
add_embeds = add_embeds.to(emb.dtype)
|
1002 |
-
aug_emb = self.add_embedding(add_embeds)
|
1003 |
-
elif self.config.addition_embed_type == "image":
|
1004 |
-
# Kandinsky 2.2 - style
|
1005 |
-
if "image_embeds" not in added_cond_kwargs:
|
1006 |
-
raise ValueError(
|
1007 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1008 |
-
)
|
1009 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1010 |
-
aug_emb = self.add_embedding(image_embs)
|
1011 |
-
elif self.config.addition_embed_type == "image_hint":
|
1012 |
-
# Kandinsky 2.2 - style
|
1013 |
-
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1014 |
-
raise ValueError(
|
1015 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1016 |
-
)
|
1017 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1018 |
-
hint = added_cond_kwargs.get("hint")
|
1019 |
-
aug_emb = self.add_embedding(image_embs, hint)
|
1020 |
-
return aug_emb
|
1021 |
-
|
1022 |
-
def process_encoder_hidden_states(
|
1023 |
-
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1024 |
-
) -> torch.Tensor:
|
1025 |
-
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1026 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1027 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1028 |
-
# Kandinsky 2.1 - style
|
1029 |
-
if "image_embeds" not in added_cond_kwargs:
|
1030 |
-
raise ValueError(
|
1031 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1032 |
-
)
|
1033 |
-
|
1034 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1035 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1036 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1037 |
-
# Kandinsky 2.2 - style
|
1038 |
-
if "image_embeds" not in added_cond_kwargs:
|
1039 |
-
raise ValueError(
|
1040 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1041 |
-
)
|
1042 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1043 |
-
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1044 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1045 |
-
if "image_embeds" not in added_cond_kwargs:
|
1046 |
-
raise ValueError(
|
1047 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1048 |
-
)
|
1049 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1050 |
-
image_embeds = self.encoder_hid_proj(image_embeds)
|
1051 |
-
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1052 |
-
return encoder_hidden_states
|
1053 |
-
|
1054 |
-
def init_kv_extraction(self):
|
1055 |
-
for block in self.down_blocks:
|
1056 |
-
if hasattr(block, "has_cross_attention") and block.has_cross_attention:
|
1057 |
-
block.init_kv_extraction()
|
1058 |
-
|
1059 |
-
for block in self.up_blocks:
|
1060 |
-
if hasattr(block, "has_cross_attention") and block.has_cross_attention:
|
1061 |
-
block.init_kv_extraction()
|
1062 |
-
|
1063 |
-
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1064 |
-
self.mid_block.init_kv_extraction()
|
1065 |
-
|
1066 |
-
def forward(
|
1067 |
-
self,
|
1068 |
-
sample: torch.FloatTensor,
|
1069 |
-
timestep: Union[torch.Tensor, float, int],
|
1070 |
-
encoder_hidden_states: torch.Tensor,
|
1071 |
-
class_labels: Optional[torch.Tensor] = None,
|
1072 |
-
timestep_cond: Optional[torch.Tensor] = None,
|
1073 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1074 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1075 |
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1076 |
-
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1077 |
-
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1078 |
-
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1079 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1080 |
-
return_dict: bool = True,
|
1081 |
-
) -> Union[ExtractKVUNet2DConditionOutput, Tuple]:
|
1082 |
-
r"""
|
1083 |
-
The [`UNet2DConditionModel`] forward method.
|
1084 |
-
|
1085 |
-
Args:
|
1086 |
-
sample (`torch.FloatTensor`):
|
1087 |
-
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1088 |
-
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1089 |
-
encoder_hidden_states (`torch.FloatTensor`):
|
1090 |
-
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1091 |
-
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1092 |
-
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1093 |
-
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1094 |
-
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1095 |
-
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1096 |
-
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1097 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1098 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1099 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
1100 |
-
cross_attention_kwargs (`dict`, *optional*):
|
1101 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1102 |
-
`self.processor` in
|
1103 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1104 |
-
added_cond_kwargs: (`dict`, *optional*):
|
1105 |
-
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1106 |
-
are passed along to the UNet blocks.
|
1107 |
-
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1108 |
-
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1109 |
-
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1110 |
-
A tensor that if specified is added to the residual of the middle unet block.
|
1111 |
-
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1112 |
-
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1113 |
-
encoder_attention_mask (`torch.Tensor`):
|
1114 |
-
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1115 |
-
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1116 |
-
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1117 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
1118 |
-
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1119 |
-
tuple.
|
1120 |
-
|
1121 |
-
Returns:
|
1122 |
-
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1123 |
-
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
|
1124 |
-
otherwise a `tuple` is returned where the first element is the sample tensor.
|
1125 |
-
"""
|
1126 |
-
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1127 |
-
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1128 |
-
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1129 |
-
# on the fly if necessary.
|
1130 |
-
default_overall_up_factor = 2**self.num_upsamplers
|
1131 |
-
|
1132 |
-
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1133 |
-
forward_upsample_size = False
|
1134 |
-
upsample_size = None
|
1135 |
-
|
1136 |
-
for dim in sample.shape[-2:]:
|
1137 |
-
if dim % default_overall_up_factor != 0:
|
1138 |
-
# Forward upsample size to force interpolation output size.
|
1139 |
-
forward_upsample_size = True
|
1140 |
-
break
|
1141 |
-
|
1142 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1143 |
-
# expects mask of shape:
|
1144 |
-
# [batch, key_tokens]
|
1145 |
-
# adds singleton query_tokens dimension:
|
1146 |
-
# [batch, 1, key_tokens]
|
1147 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1148 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1149 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1150 |
-
if attention_mask is not None:
|
1151 |
-
# assume that mask is expressed as:
|
1152 |
-
# (1 = keep, 0 = discard)
|
1153 |
-
# convert mask into a bias that can be added to attention scores:
|
1154 |
-
# (keep = +0, discard = -10000.0)
|
1155 |
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1156 |
-
attention_mask = attention_mask.unsqueeze(1)
|
1157 |
-
|
1158 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1159 |
-
if encoder_attention_mask is not None:
|
1160 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1161 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1162 |
-
|
1163 |
-
# 0. center input if necessary
|
1164 |
-
if self.config.center_input_sample:
|
1165 |
-
sample = 2 * sample - 1.0
|
1166 |
-
|
1167 |
-
# 1. time
|
1168 |
-
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1169 |
-
emb = self.time_embedding(t_emb, timestep_cond)
|
1170 |
-
aug_emb = None
|
1171 |
-
|
1172 |
-
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1173 |
-
if class_emb is not None:
|
1174 |
-
if self.config.class_embeddings_concat:
|
1175 |
-
emb = torch.cat([emb, class_emb], dim=-1)
|
1176 |
-
else:
|
1177 |
-
emb = emb + class_emb
|
1178 |
-
|
1179 |
-
aug_emb = self.get_aug_embed(
|
1180 |
-
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1181 |
-
)
|
1182 |
-
if self.config.addition_embed_type == "image_hint":
|
1183 |
-
aug_emb, hint = aug_emb
|
1184 |
-
sample = torch.cat([sample, hint], dim=1)
|
1185 |
-
|
1186 |
-
emb = emb + aug_emb if aug_emb is not None else emb
|
1187 |
-
|
1188 |
-
if self.time_embed_act is not None:
|
1189 |
-
emb = self.time_embed_act(emb)
|
1190 |
-
|
1191 |
-
encoder_hidden_states = self.process_encoder_hidden_states(
|
1192 |
-
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1193 |
-
)
|
1194 |
-
|
1195 |
-
# 2. pre-process
|
1196 |
-
sample = self.conv_in(sample)
|
1197 |
-
|
1198 |
-
# 2.5 GLIGEN position net
|
1199 |
-
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1200 |
-
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1201 |
-
gligen_args = cross_attention_kwargs.pop("gligen")
|
1202 |
-
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1203 |
-
|
1204 |
-
if cross_attention_kwargs is not None and cross_attention_kwargs.get("kv_drop_idx", None) is not None:
|
1205 |
-
threshold = cross_attention_kwargs.pop("kv_drop_idx")
|
1206 |
-
cross_attention_kwargs["kv_drop_idx"] = timestep<threshold
|
1207 |
-
|
1208 |
-
# 3. down
|
1209 |
-
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
1210 |
-
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
1211 |
-
if cross_attention_kwargs is not None:
|
1212 |
-
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1213 |
-
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
1214 |
-
else:
|
1215 |
-
lora_scale = 1.0
|
1216 |
-
|
1217 |
-
if USE_PEFT_BACKEND:
|
1218 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1219 |
-
scale_lora_layers(self, lora_scale)
|
1220 |
-
|
1221 |
-
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1222 |
-
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1223 |
-
is_adapter = down_intrablock_additional_residuals is not None
|
1224 |
-
# maintain backward compatibility for legacy usage, where
|
1225 |
-
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1226 |
-
# but can only use one or the other
|
1227 |
-
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1228 |
-
deprecate(
|
1229 |
-
"T2I should not use down_block_additional_residuals",
|
1230 |
-
"1.3.0",
|
1231 |
-
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1232 |
-
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1233 |
-
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1234 |
-
standard_warn=False,
|
1235 |
-
)
|
1236 |
-
down_intrablock_additional_residuals = down_block_additional_residuals
|
1237 |
-
is_adapter = True
|
1238 |
-
|
1239 |
-
down_block_res_samples = (sample,)
|
1240 |
-
extracted_kvs = {}
|
1241 |
-
for downsample_block in self.down_blocks:
|
1242 |
-
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1243 |
-
# For t2i-adapter CrossAttnDownBlock2D
|
1244 |
-
additional_residuals = {}
|
1245 |
-
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1246 |
-
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1247 |
-
|
1248 |
-
sample, res_samples, extracted_kv = downsample_block(
|
1249 |
-
hidden_states=sample,
|
1250 |
-
temb=emb,
|
1251 |
-
encoder_hidden_states=encoder_hidden_states,
|
1252 |
-
attention_mask=attention_mask,
|
1253 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1254 |
-
encoder_attention_mask=encoder_attention_mask,
|
1255 |
-
**additional_residuals,
|
1256 |
-
)
|
1257 |
-
extracted_kvs.update(extracted_kv)
|
1258 |
-
else:
|
1259 |
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1260 |
-
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1261 |
-
sample += down_intrablock_additional_residuals.pop(0)
|
1262 |
-
|
1263 |
-
down_block_res_samples += res_samples
|
1264 |
-
|
1265 |
-
if is_controlnet:
|
1266 |
-
new_down_block_res_samples = ()
|
1267 |
-
|
1268 |
-
for down_block_res_sample, down_block_additional_residual in zip(
|
1269 |
-
down_block_res_samples, down_block_additional_residuals
|
1270 |
-
):
|
1271 |
-
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1272 |
-
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1273 |
-
|
1274 |
-
down_block_res_samples = new_down_block_res_samples
|
1275 |
-
|
1276 |
-
# 4. mid
|
1277 |
-
if self.mid_block is not None:
|
1278 |
-
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1279 |
-
sample, extracted_kv = self.mid_block(
|
1280 |
-
sample,
|
1281 |
-
emb,
|
1282 |
-
encoder_hidden_states=encoder_hidden_states,
|
1283 |
-
attention_mask=attention_mask,
|
1284 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1285 |
-
encoder_attention_mask=encoder_attention_mask,
|
1286 |
-
)
|
1287 |
-
extracted_kvs.update(extracted_kv)
|
1288 |
-
else:
|
1289 |
-
sample = self.mid_block(sample, emb)
|
1290 |
-
|
1291 |
-
# To support T2I-Adapter-XL
|
1292 |
-
if (
|
1293 |
-
is_adapter
|
1294 |
-
and len(down_intrablock_additional_residuals) > 0
|
1295 |
-
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1296 |
-
):
|
1297 |
-
sample += down_intrablock_additional_residuals.pop(0)
|
1298 |
-
|
1299 |
-
if is_controlnet:
|
1300 |
-
sample = sample + mid_block_additional_residual
|
1301 |
-
|
1302 |
-
# 5. up
|
1303 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
1304 |
-
is_final_block = i == len(self.up_blocks) - 1
|
1305 |
-
|
1306 |
-
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1307 |
-
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1308 |
-
|
1309 |
-
# if we have not reached the final block and need to forward the
|
1310 |
-
# upsample size, we do it here
|
1311 |
-
if not is_final_block and forward_upsample_size:
|
1312 |
-
upsample_size = down_block_res_samples[-1].shape[2:]
|
1313 |
-
|
1314 |
-
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1315 |
-
sample, extract_kv = upsample_block(
|
1316 |
-
hidden_states=sample,
|
1317 |
-
temb=emb,
|
1318 |
-
res_hidden_states_tuple=res_samples,
|
1319 |
-
encoder_hidden_states=encoder_hidden_states,
|
1320 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1321 |
-
upsample_size=upsample_size,
|
1322 |
-
attention_mask=attention_mask,
|
1323 |
-
encoder_attention_mask=encoder_attention_mask,
|
1324 |
-
)
|
1325 |
-
extracted_kvs.update(extract_kv)
|
1326 |
-
else:
|
1327 |
-
sample = upsample_block(
|
1328 |
-
hidden_states=sample,
|
1329 |
-
temb=emb,
|
1330 |
-
res_hidden_states_tuple=res_samples,
|
1331 |
-
upsample_size=upsample_size,
|
1332 |
-
)
|
1333 |
-
|
1334 |
-
# 6. post-process
|
1335 |
-
if self.conv_norm_out:
|
1336 |
-
sample = self.conv_norm_out(sample)
|
1337 |
-
sample = self.conv_act(sample)
|
1338 |
-
sample = self.conv_out(sample)
|
1339 |
-
|
1340 |
-
if USE_PEFT_BACKEND:
|
1341 |
-
# remove `lora_scale` from each PEFT layer
|
1342 |
-
unscale_lora_layers(self, lora_scale)
|
1343 |
-
|
1344 |
-
if not return_dict:
|
1345 |
-
return (sample, extracted_kvs)
|
1346 |
-
|
1347 |
-
return ExtractKVUNet2DConditionOutput(sample=sample, cached_kvs=extracted_kvs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module/unet/unet_2d_extractKV_blocks.py
DELETED
@@ -1,1417 +0,0 @@
|
|
1 |
-
# Copy from diffusers.models.unet.unet_2d_blocks.py
|
2 |
-
|
3 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
from typing import Any, Dict, Optional, Tuple, Union
|
17 |
-
|
18 |
-
import numpy as np
|
19 |
-
import torch
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from torch import nn
|
22 |
-
|
23 |
-
from diffusers.utils import deprecate, is_torch_version, logging
|
24 |
-
from diffusers.utils.torch_utils import apply_freeu
|
25 |
-
from diffusers.models.activations import get_activation
|
26 |
-
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
27 |
-
from diffusers.models.normalization import AdaGroupNorm
|
28 |
-
from diffusers.models.resnet import (
|
29 |
-
Downsample2D,
|
30 |
-
FirDownsample2D,
|
31 |
-
FirUpsample2D,
|
32 |
-
KDownsample2D,
|
33 |
-
KUpsample2D,
|
34 |
-
ResnetBlock2D,
|
35 |
-
ResnetBlockCondNorm2D,
|
36 |
-
Upsample2D,
|
37 |
-
)
|
38 |
-
from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel
|
39 |
-
from diffusers.models.transformers.transformer_2d import Transformer2DModel
|
40 |
-
|
41 |
-
from module.transformers.transformer_2d_ExtractKV import ExtractKVTransformer2DModel
|
42 |
-
|
43 |
-
|
44 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
45 |
-
|
46 |
-
|
47 |
-
def get_down_block(
|
48 |
-
down_block_type: str,
|
49 |
-
num_layers: int,
|
50 |
-
in_channels: int,
|
51 |
-
out_channels: int,
|
52 |
-
temb_channels: int,
|
53 |
-
add_downsample: bool,
|
54 |
-
resnet_eps: float,
|
55 |
-
resnet_act_fn: str,
|
56 |
-
transformer_layers_per_block: int = 1,
|
57 |
-
num_attention_heads: Optional[int] = None,
|
58 |
-
resnet_groups: Optional[int] = None,
|
59 |
-
cross_attention_dim: Optional[int] = None,
|
60 |
-
downsample_padding: Optional[int] = None,
|
61 |
-
dual_cross_attention: bool = False,
|
62 |
-
use_linear_projection: bool = False,
|
63 |
-
only_cross_attention: bool = False,
|
64 |
-
upcast_attention: bool = False,
|
65 |
-
resnet_time_scale_shift: str = "default",
|
66 |
-
attention_type: str = "default",
|
67 |
-
resnet_skip_time_act: bool = False,
|
68 |
-
resnet_out_scale_factor: float = 1.0,
|
69 |
-
cross_attention_norm: Optional[str] = None,
|
70 |
-
attention_head_dim: Optional[int] = None,
|
71 |
-
downsample_type: Optional[str] = None,
|
72 |
-
dropout: float = 0.0,
|
73 |
-
extract_self_attention_kv: bool = False,
|
74 |
-
extract_cross_attention_kv: bool = False,
|
75 |
-
):
|
76 |
-
# If attn head dim is not defined, we default it to the number of heads
|
77 |
-
if attention_head_dim is None:
|
78 |
-
logger.warning(
|
79 |
-
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
80 |
-
)
|
81 |
-
attention_head_dim = num_attention_heads
|
82 |
-
|
83 |
-
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
84 |
-
if down_block_type == "DownBlock2D":
|
85 |
-
return DownBlock2D(
|
86 |
-
num_layers=num_layers,
|
87 |
-
in_channels=in_channels,
|
88 |
-
out_channels=out_channels,
|
89 |
-
temb_channels=temb_channels,
|
90 |
-
dropout=dropout,
|
91 |
-
add_downsample=add_downsample,
|
92 |
-
resnet_eps=resnet_eps,
|
93 |
-
resnet_act_fn=resnet_act_fn,
|
94 |
-
resnet_groups=resnet_groups,
|
95 |
-
downsample_padding=downsample_padding,
|
96 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
97 |
-
)
|
98 |
-
elif down_block_type == "ResnetDownsampleBlock2D":
|
99 |
-
from diffusers.models.unets.unet_2d_blocks import ResnetDownsampleBlock2D
|
100 |
-
return ResnetDownsampleBlock2D(
|
101 |
-
num_layers=num_layers,
|
102 |
-
in_channels=in_channels,
|
103 |
-
out_channels=out_channels,
|
104 |
-
temb_channels=temb_channels,
|
105 |
-
dropout=dropout,
|
106 |
-
add_downsample=add_downsample,
|
107 |
-
resnet_eps=resnet_eps,
|
108 |
-
resnet_act_fn=resnet_act_fn,
|
109 |
-
resnet_groups=resnet_groups,
|
110 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
111 |
-
skip_time_act=resnet_skip_time_act,
|
112 |
-
output_scale_factor=resnet_out_scale_factor,
|
113 |
-
)
|
114 |
-
elif down_block_type == "AttnDownBlock2D":
|
115 |
-
from diffusers.models.unets.unet_2d_blocks import AttnDownBlock2D
|
116 |
-
if add_downsample is False:
|
117 |
-
downsample_type = None
|
118 |
-
else:
|
119 |
-
downsample_type = downsample_type or "conv" # default to 'conv'
|
120 |
-
return AttnDownBlock2D(
|
121 |
-
num_layers=num_layers,
|
122 |
-
in_channels=in_channels,
|
123 |
-
out_channels=out_channels,
|
124 |
-
temb_channels=temb_channels,
|
125 |
-
dropout=dropout,
|
126 |
-
resnet_eps=resnet_eps,
|
127 |
-
resnet_act_fn=resnet_act_fn,
|
128 |
-
resnet_groups=resnet_groups,
|
129 |
-
downsample_padding=downsample_padding,
|
130 |
-
attention_head_dim=attention_head_dim,
|
131 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
132 |
-
downsample_type=downsample_type,
|
133 |
-
)
|
134 |
-
elif down_block_type == "ExtractKVCrossAttnDownBlock2D":
|
135 |
-
if cross_attention_dim is None:
|
136 |
-
raise ValueError("cross_attention_dim must be specified for ExtractKVCrossAttnDownBlock2D")
|
137 |
-
return ExtractKVCrossAttnDownBlock2D(
|
138 |
-
num_layers=num_layers,
|
139 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
140 |
-
in_channels=in_channels,
|
141 |
-
out_channels=out_channels,
|
142 |
-
temb_channels=temb_channels,
|
143 |
-
dropout=dropout,
|
144 |
-
add_downsample=add_downsample,
|
145 |
-
resnet_eps=resnet_eps,
|
146 |
-
resnet_act_fn=resnet_act_fn,
|
147 |
-
resnet_groups=resnet_groups,
|
148 |
-
downsample_padding=downsample_padding,
|
149 |
-
cross_attention_dim=cross_attention_dim,
|
150 |
-
num_attention_heads=num_attention_heads,
|
151 |
-
dual_cross_attention=dual_cross_attention,
|
152 |
-
use_linear_projection=use_linear_projection,
|
153 |
-
only_cross_attention=only_cross_attention,
|
154 |
-
upcast_attention=upcast_attention,
|
155 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
156 |
-
attention_type=attention_type,
|
157 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
158 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
159 |
-
)
|
160 |
-
elif down_block_type == "CrossAttnDownBlock2D":
|
161 |
-
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D
|
162 |
-
if cross_attention_dim is None:
|
163 |
-
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
164 |
-
return CrossAttnDownBlock2D(
|
165 |
-
num_layers=num_layers,
|
166 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
167 |
-
in_channels=in_channels,
|
168 |
-
out_channels=out_channels,
|
169 |
-
temb_channels=temb_channels,
|
170 |
-
dropout=dropout,
|
171 |
-
add_downsample=add_downsample,
|
172 |
-
resnet_eps=resnet_eps,
|
173 |
-
resnet_act_fn=resnet_act_fn,
|
174 |
-
resnet_groups=resnet_groups,
|
175 |
-
downsample_padding=downsample_padding,
|
176 |
-
cross_attention_dim=cross_attention_dim,
|
177 |
-
num_attention_heads=num_attention_heads,
|
178 |
-
dual_cross_attention=dual_cross_attention,
|
179 |
-
use_linear_projection=use_linear_projection,
|
180 |
-
only_cross_attention=only_cross_attention,
|
181 |
-
upcast_attention=upcast_attention,
|
182 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
183 |
-
attention_type=attention_type,
|
184 |
-
)
|
185 |
-
elif down_block_type == "SimpleCrossAttnDownBlock2D":
|
186 |
-
if cross_attention_dim is None:
|
187 |
-
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
|
188 |
-
from diffusers.models.unets.unet_2d_blocks import SimpleCrossAttnDownBlock2D
|
189 |
-
return SimpleCrossAttnDownBlock2D(
|
190 |
-
num_layers=num_layers,
|
191 |
-
in_channels=in_channels,
|
192 |
-
out_channels=out_channels,
|
193 |
-
temb_channels=temb_channels,
|
194 |
-
dropout=dropout,
|
195 |
-
add_downsample=add_downsample,
|
196 |
-
resnet_eps=resnet_eps,
|
197 |
-
resnet_act_fn=resnet_act_fn,
|
198 |
-
resnet_groups=resnet_groups,
|
199 |
-
cross_attention_dim=cross_attention_dim,
|
200 |
-
attention_head_dim=attention_head_dim,
|
201 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
202 |
-
skip_time_act=resnet_skip_time_act,
|
203 |
-
output_scale_factor=resnet_out_scale_factor,
|
204 |
-
only_cross_attention=only_cross_attention,
|
205 |
-
cross_attention_norm=cross_attention_norm,
|
206 |
-
)
|
207 |
-
elif down_block_type == "SkipDownBlock2D":
|
208 |
-
from diffusers.models.unets.unet_2d_blocks import SkipDownBlock2D
|
209 |
-
return SkipDownBlock2D(
|
210 |
-
num_layers=num_layers,
|
211 |
-
in_channels=in_channels,
|
212 |
-
out_channels=out_channels,
|
213 |
-
temb_channels=temb_channels,
|
214 |
-
dropout=dropout,
|
215 |
-
add_downsample=add_downsample,
|
216 |
-
resnet_eps=resnet_eps,
|
217 |
-
resnet_act_fn=resnet_act_fn,
|
218 |
-
downsample_padding=downsample_padding,
|
219 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
220 |
-
)
|
221 |
-
elif down_block_type == "AttnSkipDownBlock2D":
|
222 |
-
from diffusers.models.unets.unet_2d_blocks import AttnSkipDownBlock2D
|
223 |
-
return AttnSkipDownBlock2D(
|
224 |
-
num_layers=num_layers,
|
225 |
-
in_channels=in_channels,
|
226 |
-
out_channels=out_channels,
|
227 |
-
temb_channels=temb_channels,
|
228 |
-
dropout=dropout,
|
229 |
-
add_downsample=add_downsample,
|
230 |
-
resnet_eps=resnet_eps,
|
231 |
-
resnet_act_fn=resnet_act_fn,
|
232 |
-
attention_head_dim=attention_head_dim,
|
233 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
234 |
-
)
|
235 |
-
elif down_block_type == "DownEncoderBlock2D":
|
236 |
-
from diffusers.models.unets.unet_2d_blocks import DownEncoderBlock2D
|
237 |
-
return DownEncoderBlock2D(
|
238 |
-
num_layers=num_layers,
|
239 |
-
in_channels=in_channels,
|
240 |
-
out_channels=out_channels,
|
241 |
-
dropout=dropout,
|
242 |
-
add_downsample=add_downsample,
|
243 |
-
resnet_eps=resnet_eps,
|
244 |
-
resnet_act_fn=resnet_act_fn,
|
245 |
-
resnet_groups=resnet_groups,
|
246 |
-
downsample_padding=downsample_padding,
|
247 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
248 |
-
)
|
249 |
-
elif down_block_type == "AttnDownEncoderBlock2D":
|
250 |
-
from diffusers.models.unets.unet_2d_blocks import AttnDownEncoderBlock2D
|
251 |
-
return AttnDownEncoderBlock2D(
|
252 |
-
num_layers=num_layers,
|
253 |
-
in_channels=in_channels,
|
254 |
-
out_channels=out_channels,
|
255 |
-
dropout=dropout,
|
256 |
-
add_downsample=add_downsample,
|
257 |
-
resnet_eps=resnet_eps,
|
258 |
-
resnet_act_fn=resnet_act_fn,
|
259 |
-
resnet_groups=resnet_groups,
|
260 |
-
downsample_padding=downsample_padding,
|
261 |
-
attention_head_dim=attention_head_dim,
|
262 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
263 |
-
)
|
264 |
-
elif down_block_type == "KDownBlock2D":
|
265 |
-
from diffusers.models.unets.unet_2d_blocks import KDownBlock2D
|
266 |
-
return KDownBlock2D(
|
267 |
-
num_layers=num_layers,
|
268 |
-
in_channels=in_channels,
|
269 |
-
out_channels=out_channels,
|
270 |
-
temb_channels=temb_channels,
|
271 |
-
dropout=dropout,
|
272 |
-
add_downsample=add_downsample,
|
273 |
-
resnet_eps=resnet_eps,
|
274 |
-
resnet_act_fn=resnet_act_fn,
|
275 |
-
)
|
276 |
-
elif down_block_type == "KCrossAttnDownBlock2D":
|
277 |
-
from diffusers.models.unets.unet_2d_blocks import KCrossAttnDownBlock2D
|
278 |
-
return KCrossAttnDownBlock2D(
|
279 |
-
num_layers=num_layers,
|
280 |
-
in_channels=in_channels,
|
281 |
-
out_channels=out_channels,
|
282 |
-
temb_channels=temb_channels,
|
283 |
-
dropout=dropout,
|
284 |
-
add_downsample=add_downsample,
|
285 |
-
resnet_eps=resnet_eps,
|
286 |
-
resnet_act_fn=resnet_act_fn,
|
287 |
-
cross_attention_dim=cross_attention_dim,
|
288 |
-
attention_head_dim=attention_head_dim,
|
289 |
-
add_self_attention=True if not add_downsample else False,
|
290 |
-
)
|
291 |
-
raise ValueError(f"{down_block_type} does not exist.")
|
292 |
-
|
293 |
-
|
294 |
-
def get_mid_block(
|
295 |
-
mid_block_type: str,
|
296 |
-
temb_channels: int,
|
297 |
-
in_channels: int,
|
298 |
-
resnet_eps: float,
|
299 |
-
resnet_act_fn: str,
|
300 |
-
resnet_groups: int,
|
301 |
-
output_scale_factor: float = 1.0,
|
302 |
-
transformer_layers_per_block: int = 1,
|
303 |
-
num_attention_heads: Optional[int] = None,
|
304 |
-
cross_attention_dim: Optional[int] = None,
|
305 |
-
dual_cross_attention: bool = False,
|
306 |
-
use_linear_projection: bool = False,
|
307 |
-
mid_block_only_cross_attention: bool = False,
|
308 |
-
upcast_attention: bool = False,
|
309 |
-
resnet_time_scale_shift: str = "default",
|
310 |
-
attention_type: str = "default",
|
311 |
-
resnet_skip_time_act: bool = False,
|
312 |
-
cross_attention_norm: Optional[str] = None,
|
313 |
-
attention_head_dim: Optional[int] = 1,
|
314 |
-
dropout: float = 0.0,
|
315 |
-
extract_self_attention_kv: bool = False,
|
316 |
-
extract_cross_attention_kv: bool = False,
|
317 |
-
):
|
318 |
-
if mid_block_type == "ExtractKVUNetMidBlock2DCrossAttn":
|
319 |
-
return ExtractKVUNetMidBlock2DCrossAttn(
|
320 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
321 |
-
in_channels=in_channels,
|
322 |
-
temb_channels=temb_channels,
|
323 |
-
dropout=dropout,
|
324 |
-
resnet_eps=resnet_eps,
|
325 |
-
resnet_act_fn=resnet_act_fn,
|
326 |
-
output_scale_factor=output_scale_factor,
|
327 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
328 |
-
cross_attention_dim=cross_attention_dim,
|
329 |
-
num_attention_heads=num_attention_heads,
|
330 |
-
resnet_groups=resnet_groups,
|
331 |
-
dual_cross_attention=dual_cross_attention,
|
332 |
-
use_linear_projection=use_linear_projection,
|
333 |
-
upcast_attention=upcast_attention,
|
334 |
-
attention_type=attention_type,
|
335 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
336 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
337 |
-
)
|
338 |
-
elif mid_block_type == "UNetMidBlock2DCrossAttn":
|
339 |
-
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2DCrossAttn
|
340 |
-
return UNetMidBlock2DCrossAttn(
|
341 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
342 |
-
in_channels=in_channels,
|
343 |
-
temb_channels=temb_channels,
|
344 |
-
dropout=dropout,
|
345 |
-
resnet_eps=resnet_eps,
|
346 |
-
resnet_act_fn=resnet_act_fn,
|
347 |
-
output_scale_factor=output_scale_factor,
|
348 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
349 |
-
cross_attention_dim=cross_attention_dim,
|
350 |
-
num_attention_heads=num_attention_heads,
|
351 |
-
resnet_groups=resnet_groups,
|
352 |
-
dual_cross_attention=dual_cross_attention,
|
353 |
-
use_linear_projection=use_linear_projection,
|
354 |
-
upcast_attention=upcast_attention,
|
355 |
-
attention_type=attention_type,
|
356 |
-
)
|
357 |
-
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
358 |
-
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2DSimpleCrossAttn
|
359 |
-
return UNetMidBlock2DSimpleCrossAttn(
|
360 |
-
in_channels=in_channels,
|
361 |
-
temb_channels=temb_channels,
|
362 |
-
dropout=dropout,
|
363 |
-
resnet_eps=resnet_eps,
|
364 |
-
resnet_act_fn=resnet_act_fn,
|
365 |
-
output_scale_factor=output_scale_factor,
|
366 |
-
cross_attention_dim=cross_attention_dim,
|
367 |
-
attention_head_dim=attention_head_dim,
|
368 |
-
resnet_groups=resnet_groups,
|
369 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
370 |
-
skip_time_act=resnet_skip_time_act,
|
371 |
-
only_cross_attention=mid_block_only_cross_attention,
|
372 |
-
cross_attention_norm=cross_attention_norm,
|
373 |
-
)
|
374 |
-
elif mid_block_type == "UNetMidBlock2D":
|
375 |
-
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D
|
376 |
-
return UNetMidBlock2D(
|
377 |
-
in_channels=in_channels,
|
378 |
-
temb_channels=temb_channels,
|
379 |
-
dropout=dropout,
|
380 |
-
num_layers=0,
|
381 |
-
resnet_eps=resnet_eps,
|
382 |
-
resnet_act_fn=resnet_act_fn,
|
383 |
-
output_scale_factor=output_scale_factor,
|
384 |
-
resnet_groups=resnet_groups,
|
385 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
386 |
-
add_attention=False,
|
387 |
-
)
|
388 |
-
elif mid_block_type is None:
|
389 |
-
return None
|
390 |
-
else:
|
391 |
-
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
392 |
-
|
393 |
-
|
394 |
-
def get_up_block(
|
395 |
-
up_block_type: str,
|
396 |
-
num_layers: int,
|
397 |
-
in_channels: int,
|
398 |
-
out_channels: int,
|
399 |
-
prev_output_channel: int,
|
400 |
-
temb_channels: int,
|
401 |
-
add_upsample: bool,
|
402 |
-
resnet_eps: float,
|
403 |
-
resnet_act_fn: str,
|
404 |
-
resolution_idx: Optional[int] = None,
|
405 |
-
transformer_layers_per_block: int = 1,
|
406 |
-
num_attention_heads: Optional[int] = None,
|
407 |
-
resnet_groups: Optional[int] = None,
|
408 |
-
cross_attention_dim: Optional[int] = None,
|
409 |
-
dual_cross_attention: bool = False,
|
410 |
-
use_linear_projection: bool = False,
|
411 |
-
only_cross_attention: bool = False,
|
412 |
-
upcast_attention: bool = False,
|
413 |
-
resnet_time_scale_shift: str = "default",
|
414 |
-
attention_type: str = "default",
|
415 |
-
resnet_skip_time_act: bool = False,
|
416 |
-
resnet_out_scale_factor: float = 1.0,
|
417 |
-
cross_attention_norm: Optional[str] = None,
|
418 |
-
attention_head_dim: Optional[int] = None,
|
419 |
-
upsample_type: Optional[str] = None,
|
420 |
-
dropout: float = 0.0,
|
421 |
-
extract_self_attention_kv: bool = False,
|
422 |
-
extract_cross_attention_kv: bool = False,
|
423 |
-
) -> nn.Module:
|
424 |
-
# If attn head dim is not defined, we default it to the number of heads
|
425 |
-
if attention_head_dim is None:
|
426 |
-
logger.warning(
|
427 |
-
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
428 |
-
)
|
429 |
-
attention_head_dim = num_attention_heads
|
430 |
-
|
431 |
-
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
432 |
-
if up_block_type == "UpBlock2D":
|
433 |
-
return UpBlock2D(
|
434 |
-
num_layers=num_layers,
|
435 |
-
in_channels=in_channels,
|
436 |
-
out_channels=out_channels,
|
437 |
-
prev_output_channel=prev_output_channel,
|
438 |
-
temb_channels=temb_channels,
|
439 |
-
resolution_idx=resolution_idx,
|
440 |
-
dropout=dropout,
|
441 |
-
add_upsample=add_upsample,
|
442 |
-
resnet_eps=resnet_eps,
|
443 |
-
resnet_act_fn=resnet_act_fn,
|
444 |
-
resnet_groups=resnet_groups,
|
445 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
446 |
-
)
|
447 |
-
elif up_block_type == "ResnetUpsampleBlock2D":
|
448 |
-
from diffusers.models.unets.unet_2d_blocks import ResnetUpsampleBlock2D
|
449 |
-
return ResnetUpsampleBlock2D(
|
450 |
-
num_layers=num_layers,
|
451 |
-
in_channels=in_channels,
|
452 |
-
out_channels=out_channels,
|
453 |
-
prev_output_channel=prev_output_channel,
|
454 |
-
temb_channels=temb_channels,
|
455 |
-
resolution_idx=resolution_idx,
|
456 |
-
dropout=dropout,
|
457 |
-
add_upsample=add_upsample,
|
458 |
-
resnet_eps=resnet_eps,
|
459 |
-
resnet_act_fn=resnet_act_fn,
|
460 |
-
resnet_groups=resnet_groups,
|
461 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
462 |
-
skip_time_act=resnet_skip_time_act,
|
463 |
-
output_scale_factor=resnet_out_scale_factor,
|
464 |
-
)
|
465 |
-
elif up_block_type == "ExtractKVCrossAttnUpBlock2D":
|
466 |
-
if cross_attention_dim is None:
|
467 |
-
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
468 |
-
return ExtractKVCrossAttnUpBlock2D(
|
469 |
-
num_layers=num_layers,
|
470 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
471 |
-
in_channels=in_channels,
|
472 |
-
out_channels=out_channels,
|
473 |
-
prev_output_channel=prev_output_channel,
|
474 |
-
temb_channels=temb_channels,
|
475 |
-
resolution_idx=resolution_idx,
|
476 |
-
dropout=dropout,
|
477 |
-
add_upsample=add_upsample,
|
478 |
-
resnet_eps=resnet_eps,
|
479 |
-
resnet_act_fn=resnet_act_fn,
|
480 |
-
resnet_groups=resnet_groups,
|
481 |
-
cross_attention_dim=cross_attention_dim,
|
482 |
-
num_attention_heads=num_attention_heads,
|
483 |
-
dual_cross_attention=dual_cross_attention,
|
484 |
-
use_linear_projection=use_linear_projection,
|
485 |
-
only_cross_attention=only_cross_attention,
|
486 |
-
upcast_attention=upcast_attention,
|
487 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
488 |
-
attention_type=attention_type,
|
489 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
490 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
491 |
-
)
|
492 |
-
elif up_block_type == "CrossAttnUpBlock2D":
|
493 |
-
if cross_attention_dim is None:
|
494 |
-
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
495 |
-
from diffusers.models.unets.unet_2d_blocks import CrossAttnUpBlock2D
|
496 |
-
return CrossAttnUpBlock2D(
|
497 |
-
num_layers=num_layers,
|
498 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
499 |
-
in_channels=in_channels,
|
500 |
-
out_channels=out_channels,
|
501 |
-
prev_output_channel=prev_output_channel,
|
502 |
-
temb_channels=temb_channels,
|
503 |
-
resolution_idx=resolution_idx,
|
504 |
-
dropout=dropout,
|
505 |
-
add_upsample=add_upsample,
|
506 |
-
resnet_eps=resnet_eps,
|
507 |
-
resnet_act_fn=resnet_act_fn,
|
508 |
-
resnet_groups=resnet_groups,
|
509 |
-
cross_attention_dim=cross_attention_dim,
|
510 |
-
num_attention_heads=num_attention_heads,
|
511 |
-
dual_cross_attention=dual_cross_attention,
|
512 |
-
use_linear_projection=use_linear_projection,
|
513 |
-
only_cross_attention=only_cross_attention,
|
514 |
-
upcast_attention=upcast_attention,
|
515 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
516 |
-
attention_type=attention_type,
|
517 |
-
)
|
518 |
-
elif up_block_type == "SimpleCrossAttnUpBlock2D":
|
519 |
-
if cross_attention_dim is None:
|
520 |
-
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
|
521 |
-
from diffusers.models.unets.unet_2d_blocks import SimpleCrossAttnUpBlock2D
|
522 |
-
return SimpleCrossAttnUpBlock2D(
|
523 |
-
num_layers=num_layers,
|
524 |
-
in_channels=in_channels,
|
525 |
-
out_channels=out_channels,
|
526 |
-
prev_output_channel=prev_output_channel,
|
527 |
-
temb_channels=temb_channels,
|
528 |
-
resolution_idx=resolution_idx,
|
529 |
-
dropout=dropout,
|
530 |
-
add_upsample=add_upsample,
|
531 |
-
resnet_eps=resnet_eps,
|
532 |
-
resnet_act_fn=resnet_act_fn,
|
533 |
-
resnet_groups=resnet_groups,
|
534 |
-
cross_attention_dim=cross_attention_dim,
|
535 |
-
attention_head_dim=attention_head_dim,
|
536 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
537 |
-
skip_time_act=resnet_skip_time_act,
|
538 |
-
output_scale_factor=resnet_out_scale_factor,
|
539 |
-
only_cross_attention=only_cross_attention,
|
540 |
-
cross_attention_norm=cross_attention_norm,
|
541 |
-
)
|
542 |
-
elif up_block_type == "AttnUpBlock2D":
|
543 |
-
from diffusers.models.unets.unet_2d_blocks import AttnUpBlock2D
|
544 |
-
if add_upsample is False:
|
545 |
-
upsample_type = None
|
546 |
-
else:
|
547 |
-
upsample_type = upsample_type or "conv" # default to 'conv'
|
548 |
-
|
549 |
-
return AttnUpBlock2D(
|
550 |
-
num_layers=num_layers,
|
551 |
-
in_channels=in_channels,
|
552 |
-
out_channels=out_channels,
|
553 |
-
prev_output_channel=prev_output_channel,
|
554 |
-
temb_channels=temb_channels,
|
555 |
-
resolution_idx=resolution_idx,
|
556 |
-
dropout=dropout,
|
557 |
-
resnet_eps=resnet_eps,
|
558 |
-
resnet_act_fn=resnet_act_fn,
|
559 |
-
resnet_groups=resnet_groups,
|
560 |
-
attention_head_dim=attention_head_dim,
|
561 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
562 |
-
upsample_type=upsample_type,
|
563 |
-
)
|
564 |
-
elif up_block_type == "SkipUpBlock2D":
|
565 |
-
from diffusers.models.unets.unet_2d_blocks import SkipUpBlock2D
|
566 |
-
return SkipUpBlock2D(
|
567 |
-
num_layers=num_layers,
|
568 |
-
in_channels=in_channels,
|
569 |
-
out_channels=out_channels,
|
570 |
-
prev_output_channel=prev_output_channel,
|
571 |
-
temb_channels=temb_channels,
|
572 |
-
resolution_idx=resolution_idx,
|
573 |
-
dropout=dropout,
|
574 |
-
add_upsample=add_upsample,
|
575 |
-
resnet_eps=resnet_eps,
|
576 |
-
resnet_act_fn=resnet_act_fn,
|
577 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
578 |
-
)
|
579 |
-
elif up_block_type == "AttnSkipUpBlock2D":
|
580 |
-
from diffusers.models.unets.unet_2d_blocks import AttnSkipUpBlock2D
|
581 |
-
return AttnSkipUpBlock2D(
|
582 |
-
num_layers=num_layers,
|
583 |
-
in_channels=in_channels,
|
584 |
-
out_channels=out_channels,
|
585 |
-
prev_output_channel=prev_output_channel,
|
586 |
-
temb_channels=temb_channels,
|
587 |
-
resolution_idx=resolution_idx,
|
588 |
-
dropout=dropout,
|
589 |
-
add_upsample=add_upsample,
|
590 |
-
resnet_eps=resnet_eps,
|
591 |
-
resnet_act_fn=resnet_act_fn,
|
592 |
-
attention_head_dim=attention_head_dim,
|
593 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
594 |
-
)
|
595 |
-
elif up_block_type == "UpDecoderBlock2D":
|
596 |
-
from diffusers.models.unets.unet_2d_blocks import UpDecoderBlock2D
|
597 |
-
return UpDecoderBlock2D(
|
598 |
-
num_layers=num_layers,
|
599 |
-
in_channels=in_channels,
|
600 |
-
out_channels=out_channels,
|
601 |
-
resolution_idx=resolution_idx,
|
602 |
-
dropout=dropout,
|
603 |
-
add_upsample=add_upsample,
|
604 |
-
resnet_eps=resnet_eps,
|
605 |
-
resnet_act_fn=resnet_act_fn,
|
606 |
-
resnet_groups=resnet_groups,
|
607 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
608 |
-
temb_channels=temb_channels,
|
609 |
-
)
|
610 |
-
elif up_block_type == "AttnUpDecoderBlock2D":
|
611 |
-
from diffusers.models.unets.unet_2d_blocks import AttnUpDecoderBlock2D
|
612 |
-
return AttnUpDecoderBlock2D(
|
613 |
-
num_layers=num_layers,
|
614 |
-
in_channels=in_channels,
|
615 |
-
out_channels=out_channels,
|
616 |
-
resolution_idx=resolution_idx,
|
617 |
-
dropout=dropout,
|
618 |
-
add_upsample=add_upsample,
|
619 |
-
resnet_eps=resnet_eps,
|
620 |
-
resnet_act_fn=resnet_act_fn,
|
621 |
-
resnet_groups=resnet_groups,
|
622 |
-
attention_head_dim=attention_head_dim,
|
623 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
624 |
-
temb_channels=temb_channels,
|
625 |
-
)
|
626 |
-
elif up_block_type == "KUpBlock2D":
|
627 |
-
from diffusers.models.unets.unet_2d_blocks import KUpBlock2D
|
628 |
-
return KUpBlock2D(
|
629 |
-
num_layers=num_layers,
|
630 |
-
in_channels=in_channels,
|
631 |
-
out_channels=out_channels,
|
632 |
-
temb_channels=temb_channels,
|
633 |
-
resolution_idx=resolution_idx,
|
634 |
-
dropout=dropout,
|
635 |
-
add_upsample=add_upsample,
|
636 |
-
resnet_eps=resnet_eps,
|
637 |
-
resnet_act_fn=resnet_act_fn,
|
638 |
-
)
|
639 |
-
elif up_block_type == "KCrossAttnUpBlock2D":
|
640 |
-
from diffusers.models.unets.unet_2d_blocks import KCrossAttnUpBlock2D
|
641 |
-
return KCrossAttnUpBlock2D(
|
642 |
-
num_layers=num_layers,
|
643 |
-
in_channels=in_channels,
|
644 |
-
out_channels=out_channels,
|
645 |
-
temb_channels=temb_channels,
|
646 |
-
resolution_idx=resolution_idx,
|
647 |
-
dropout=dropout,
|
648 |
-
add_upsample=add_upsample,
|
649 |
-
resnet_eps=resnet_eps,
|
650 |
-
resnet_act_fn=resnet_act_fn,
|
651 |
-
cross_attention_dim=cross_attention_dim,
|
652 |
-
attention_head_dim=attention_head_dim,
|
653 |
-
)
|
654 |
-
|
655 |
-
raise ValueError(f"{up_block_type} does not exist.")
|
656 |
-
|
657 |
-
|
658 |
-
class AutoencoderTinyBlock(nn.Module):
|
659 |
-
"""
|
660 |
-
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
|
661 |
-
blocks.
|
662 |
-
|
663 |
-
Args:
|
664 |
-
in_channels (`int`): The number of input channels.
|
665 |
-
out_channels (`int`): The number of output channels.
|
666 |
-
act_fn (`str`):
|
667 |
-
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
|
668 |
-
|
669 |
-
Returns:
|
670 |
-
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
|
671 |
-
`out_channels`.
|
672 |
-
"""
|
673 |
-
|
674 |
-
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
|
675 |
-
super().__init__()
|
676 |
-
act_fn = get_activation(act_fn)
|
677 |
-
self.conv = nn.Sequential(
|
678 |
-
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
679 |
-
act_fn,
|
680 |
-
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
681 |
-
act_fn,
|
682 |
-
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
683 |
-
)
|
684 |
-
self.skip = (
|
685 |
-
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
686 |
-
if in_channels != out_channels
|
687 |
-
else nn.Identity()
|
688 |
-
)
|
689 |
-
self.fuse = nn.ReLU()
|
690 |
-
|
691 |
-
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
692 |
-
return self.fuse(self.conv(x) + self.skip(x))
|
693 |
-
|
694 |
-
|
695 |
-
class ExtractKVUNetMidBlock2DCrossAttn(nn.Module):
|
696 |
-
def __init__(
|
697 |
-
self,
|
698 |
-
in_channels: int,
|
699 |
-
temb_channels: int,
|
700 |
-
out_channels: Optional[int] = None,
|
701 |
-
dropout: float = 0.0,
|
702 |
-
num_layers: int = 1,
|
703 |
-
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
704 |
-
resnet_eps: float = 1e-6,
|
705 |
-
resnet_time_scale_shift: str = "default",
|
706 |
-
resnet_act_fn: str = "swish",
|
707 |
-
resnet_groups: int = 32,
|
708 |
-
resnet_groups_out: Optional[int] = None,
|
709 |
-
resnet_pre_norm: bool = True,
|
710 |
-
num_attention_heads: int = 1,
|
711 |
-
output_scale_factor: float = 1.0,
|
712 |
-
cross_attention_dim: int = 1280,
|
713 |
-
dual_cross_attention: bool = False,
|
714 |
-
use_linear_projection: bool = False,
|
715 |
-
upcast_attention: bool = False,
|
716 |
-
attention_type: str = "default",
|
717 |
-
extract_self_attention_kv: bool = False,
|
718 |
-
extract_cross_attention_kv: bool = False,
|
719 |
-
):
|
720 |
-
super().__init__()
|
721 |
-
|
722 |
-
out_channels = out_channels or in_channels
|
723 |
-
self.in_channels = in_channels
|
724 |
-
self.out_channels = out_channels
|
725 |
-
|
726 |
-
self.has_cross_attention = True
|
727 |
-
self.num_attention_heads = num_attention_heads
|
728 |
-
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
729 |
-
|
730 |
-
# support for variable transformer layers per block
|
731 |
-
if isinstance(transformer_layers_per_block, int):
|
732 |
-
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
733 |
-
|
734 |
-
resnet_groups_out = resnet_groups_out or resnet_groups
|
735 |
-
|
736 |
-
# there is always at least one resnet
|
737 |
-
resnets = [
|
738 |
-
ResnetBlock2D(
|
739 |
-
in_channels=in_channels,
|
740 |
-
out_channels=out_channels,
|
741 |
-
temb_channels=temb_channels,
|
742 |
-
eps=resnet_eps,
|
743 |
-
groups=resnet_groups,
|
744 |
-
groups_out=resnet_groups_out,
|
745 |
-
dropout=dropout,
|
746 |
-
time_embedding_norm=resnet_time_scale_shift,
|
747 |
-
non_linearity=resnet_act_fn,
|
748 |
-
output_scale_factor=output_scale_factor,
|
749 |
-
pre_norm=resnet_pre_norm,
|
750 |
-
)
|
751 |
-
]
|
752 |
-
attentions = []
|
753 |
-
|
754 |
-
for i in range(num_layers):
|
755 |
-
if not dual_cross_attention:
|
756 |
-
attentions.append(
|
757 |
-
ExtractKVTransformer2DModel(
|
758 |
-
num_attention_heads,
|
759 |
-
out_channels // num_attention_heads,
|
760 |
-
in_channels=out_channels,
|
761 |
-
num_layers=transformer_layers_per_block[i],
|
762 |
-
cross_attention_dim=cross_attention_dim,
|
763 |
-
norm_num_groups=resnet_groups_out,
|
764 |
-
use_linear_projection=use_linear_projection,
|
765 |
-
upcast_attention=upcast_attention,
|
766 |
-
attention_type=attention_type,
|
767 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
768 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
769 |
-
)
|
770 |
-
)
|
771 |
-
else:
|
772 |
-
attentions.append(
|
773 |
-
DualTransformer2DModel(
|
774 |
-
num_attention_heads,
|
775 |
-
out_channels // num_attention_heads,
|
776 |
-
in_channels=out_channels,
|
777 |
-
num_layers=1,
|
778 |
-
cross_attention_dim=cross_attention_dim,
|
779 |
-
norm_num_groups=resnet_groups,
|
780 |
-
)
|
781 |
-
)
|
782 |
-
resnets.append(
|
783 |
-
ResnetBlock2D(
|
784 |
-
in_channels=out_channels,
|
785 |
-
out_channels=out_channels,
|
786 |
-
temb_channels=temb_channels,
|
787 |
-
eps=resnet_eps,
|
788 |
-
groups=resnet_groups_out,
|
789 |
-
dropout=dropout,
|
790 |
-
time_embedding_norm=resnet_time_scale_shift,
|
791 |
-
non_linearity=resnet_act_fn,
|
792 |
-
output_scale_factor=output_scale_factor,
|
793 |
-
pre_norm=resnet_pre_norm,
|
794 |
-
)
|
795 |
-
)
|
796 |
-
|
797 |
-
self.attentions = nn.ModuleList(attentions)
|
798 |
-
self.resnets = nn.ModuleList(resnets)
|
799 |
-
|
800 |
-
self.gradient_checkpointing = False
|
801 |
-
|
802 |
-
def forward(
|
803 |
-
self,
|
804 |
-
hidden_states: torch.FloatTensor,
|
805 |
-
temb: Optional[torch.FloatTensor] = None,
|
806 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
807 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
808 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
809 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
810 |
-
) -> torch.FloatTensor:
|
811 |
-
if cross_attention_kwargs is not None:
|
812 |
-
if cross_attention_kwargs.get("scale", None) is not None:
|
813 |
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
814 |
-
|
815 |
-
hidden_states = self.resnets[0](hidden_states, temb)
|
816 |
-
extracted_kvs = {}
|
817 |
-
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
818 |
-
if self.training and self.gradient_checkpointing:
|
819 |
-
|
820 |
-
def create_custom_forward(module, return_dict=None):
|
821 |
-
def custom_forward(*inputs):
|
822 |
-
if return_dict is not None:
|
823 |
-
return module(*inputs, return_dict=return_dict)
|
824 |
-
else:
|
825 |
-
return module(*inputs)
|
826 |
-
|
827 |
-
return custom_forward
|
828 |
-
|
829 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
830 |
-
hidden_states, extracted_kv = attn(
|
831 |
-
hidden_states,
|
832 |
-
timestep=temb,
|
833 |
-
encoder_hidden_states=encoder_hidden_states,
|
834 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
835 |
-
attention_mask=attention_mask,
|
836 |
-
encoder_attention_mask=encoder_attention_mask,
|
837 |
-
return_dict=False,
|
838 |
-
)
|
839 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
840 |
-
create_custom_forward(resnet),
|
841 |
-
hidden_states,
|
842 |
-
temb,
|
843 |
-
**ckpt_kwargs,
|
844 |
-
)
|
845 |
-
else:
|
846 |
-
hidden_states, extracted_kv = attn(
|
847 |
-
hidden_states,
|
848 |
-
timestep=temb,
|
849 |
-
encoder_hidden_states=encoder_hidden_states,
|
850 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
851 |
-
attention_mask=attention_mask,
|
852 |
-
encoder_attention_mask=encoder_attention_mask,
|
853 |
-
return_dict=False,
|
854 |
-
)
|
855 |
-
hidden_states = resnet(hidden_states, temb)
|
856 |
-
|
857 |
-
extracted_kvs.update(extracted_kv)
|
858 |
-
|
859 |
-
return hidden_states, extracted_kvs
|
860 |
-
|
861 |
-
def init_kv_extraction(self):
|
862 |
-
for block in self.attentions:
|
863 |
-
block.init_kv_extraction()
|
864 |
-
|
865 |
-
|
866 |
-
class ExtractKVCrossAttnDownBlock2D(nn.Module):
|
867 |
-
def __init__(
|
868 |
-
self,
|
869 |
-
in_channels: int,
|
870 |
-
out_channels: int,
|
871 |
-
temb_channels: int,
|
872 |
-
dropout: float = 0.0,
|
873 |
-
num_layers: int = 1, # Originally n_layers
|
874 |
-
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
875 |
-
resnet_eps: float = 1e-6,
|
876 |
-
resnet_time_scale_shift: str = "default",
|
877 |
-
resnet_act_fn: str = "swish",
|
878 |
-
resnet_groups: int = 32,
|
879 |
-
resnet_pre_norm: bool = True,
|
880 |
-
num_attention_heads: int = 1,
|
881 |
-
cross_attention_dim: int = 1280,
|
882 |
-
output_scale_factor: float = 1.0,
|
883 |
-
downsample_padding: int = 1,
|
884 |
-
add_downsample: bool = True,
|
885 |
-
dual_cross_attention: bool = False,
|
886 |
-
use_linear_projection: bool = False,
|
887 |
-
only_cross_attention: bool = False,
|
888 |
-
upcast_attention: bool = False,
|
889 |
-
attention_type: str = "default",
|
890 |
-
extract_self_attention_kv: bool = False,
|
891 |
-
extract_cross_attention_kv: bool = False,
|
892 |
-
):
|
893 |
-
super().__init__()
|
894 |
-
resnets = []
|
895 |
-
attentions = []
|
896 |
-
|
897 |
-
self.has_cross_attention = True
|
898 |
-
self.num_attention_heads = num_attention_heads
|
899 |
-
if isinstance(transformer_layers_per_block, int):
|
900 |
-
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
901 |
-
|
902 |
-
for i in range(num_layers):
|
903 |
-
in_channels = in_channels if i == 0 else out_channels
|
904 |
-
resnets.append(
|
905 |
-
ResnetBlock2D(
|
906 |
-
in_channels=in_channels,
|
907 |
-
out_channels=out_channels,
|
908 |
-
temb_channels=temb_channels,
|
909 |
-
eps=resnet_eps,
|
910 |
-
groups=resnet_groups,
|
911 |
-
dropout=dropout,
|
912 |
-
time_embedding_norm=resnet_time_scale_shift,
|
913 |
-
non_linearity=resnet_act_fn,
|
914 |
-
output_scale_factor=output_scale_factor,
|
915 |
-
pre_norm=resnet_pre_norm,
|
916 |
-
)
|
917 |
-
)
|
918 |
-
if not dual_cross_attention:
|
919 |
-
attentions.append(
|
920 |
-
ExtractKVTransformer2DModel(
|
921 |
-
num_attention_heads,
|
922 |
-
out_channels // num_attention_heads,
|
923 |
-
in_channels=out_channels,
|
924 |
-
num_layers=transformer_layers_per_block[i],
|
925 |
-
cross_attention_dim=cross_attention_dim,
|
926 |
-
norm_num_groups=resnet_groups,
|
927 |
-
use_linear_projection=use_linear_projection,
|
928 |
-
only_cross_attention=only_cross_attention,
|
929 |
-
upcast_attention=upcast_attention,
|
930 |
-
attention_type=attention_type,
|
931 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
932 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
933 |
-
)
|
934 |
-
)
|
935 |
-
else:
|
936 |
-
raise ValueError("Dual cross attention is not supported in ExtractKVCrossAttnDownBlock2D")
|
937 |
-
|
938 |
-
self.attentions = nn.ModuleList(attentions)
|
939 |
-
self.resnets = nn.ModuleList(resnets)
|
940 |
-
|
941 |
-
if add_downsample:
|
942 |
-
self.downsamplers = nn.ModuleList(
|
943 |
-
[
|
944 |
-
Downsample2D(
|
945 |
-
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
946 |
-
)
|
947 |
-
]
|
948 |
-
)
|
949 |
-
else:
|
950 |
-
self.downsamplers = None
|
951 |
-
|
952 |
-
self.gradient_checkpointing = False
|
953 |
-
|
954 |
-
def forward(
|
955 |
-
self,
|
956 |
-
hidden_states: torch.FloatTensor,
|
957 |
-
temb: Optional[torch.FloatTensor] = None,
|
958 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
959 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
960 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
961 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
962 |
-
additional_residuals: Optional[torch.FloatTensor] = None,
|
963 |
-
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
964 |
-
if cross_attention_kwargs is not None:
|
965 |
-
if cross_attention_kwargs.get("scale", None) is not None:
|
966 |
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
967 |
-
|
968 |
-
output_states = ()
|
969 |
-
extracted_kvs = {}
|
970 |
-
|
971 |
-
blocks = list(zip(self.resnets, self.attentions))
|
972 |
-
|
973 |
-
for i, (resnet, attn) in enumerate(blocks):
|
974 |
-
if self.training and self.gradient_checkpointing:
|
975 |
-
|
976 |
-
def create_custom_forward(module, return_dict=None):
|
977 |
-
def custom_forward(*inputs):
|
978 |
-
if return_dict is not None:
|
979 |
-
return module(*inputs, return_dict=return_dict)
|
980 |
-
else:
|
981 |
-
return module(*inputs)
|
982 |
-
|
983 |
-
return custom_forward
|
984 |
-
|
985 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
986 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
987 |
-
create_custom_forward(resnet),
|
988 |
-
hidden_states,
|
989 |
-
temb,
|
990 |
-
**ckpt_kwargs,
|
991 |
-
)
|
992 |
-
hidden_states, extracted_kv = attn(
|
993 |
-
hidden_states,
|
994 |
-
timestep=temb,
|
995 |
-
encoder_hidden_states=encoder_hidden_states,
|
996 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
997 |
-
attention_mask=attention_mask,
|
998 |
-
encoder_attention_mask=encoder_attention_mask,
|
999 |
-
return_dict=False,
|
1000 |
-
)
|
1001 |
-
else:
|
1002 |
-
hidden_states = resnet(hidden_states, temb)
|
1003 |
-
hidden_states, extracted_kv = attn(
|
1004 |
-
hidden_states,
|
1005 |
-
timestep=temb,
|
1006 |
-
encoder_hidden_states=encoder_hidden_states,
|
1007 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1008 |
-
attention_mask=attention_mask,
|
1009 |
-
encoder_attention_mask=encoder_attention_mask,
|
1010 |
-
return_dict=False,
|
1011 |
-
)
|
1012 |
-
|
1013 |
-
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
1014 |
-
if i == len(blocks) - 1 and additional_residuals is not None:
|
1015 |
-
hidden_states = hidden_states + additional_residuals
|
1016 |
-
|
1017 |
-
output_states = output_states + (hidden_states,)
|
1018 |
-
extracted_kvs.update(extracted_kv)
|
1019 |
-
|
1020 |
-
if self.downsamplers is not None:
|
1021 |
-
for downsampler in self.downsamplers:
|
1022 |
-
hidden_states = downsampler(hidden_states)
|
1023 |
-
|
1024 |
-
output_states = output_states + (hidden_states,)
|
1025 |
-
|
1026 |
-
return hidden_states, output_states, extracted_kvs
|
1027 |
-
|
1028 |
-
def init_kv_extraction(self):
|
1029 |
-
for block in self.attentions:
|
1030 |
-
block.init_kv_extraction()
|
1031 |
-
|
1032 |
-
|
1033 |
-
class ExtractKVCrossAttnUpBlock2D(nn.Module):
|
1034 |
-
def __init__(
|
1035 |
-
self,
|
1036 |
-
in_channels: int,
|
1037 |
-
out_channels: int,
|
1038 |
-
prev_output_channel: int,
|
1039 |
-
temb_channels: int,
|
1040 |
-
resolution_idx: Optional[int] = None,
|
1041 |
-
dropout: float = 0.0,
|
1042 |
-
num_layers: int = 1,
|
1043 |
-
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
1044 |
-
resnet_eps: float = 1e-6,
|
1045 |
-
resnet_time_scale_shift: str = "default",
|
1046 |
-
resnet_act_fn: str = "swish",
|
1047 |
-
resnet_groups: int = 32,
|
1048 |
-
resnet_pre_norm: bool = True,
|
1049 |
-
num_attention_heads: int = 1,
|
1050 |
-
cross_attention_dim: int = 1280,
|
1051 |
-
output_scale_factor: float = 1.0,
|
1052 |
-
add_upsample: bool = True,
|
1053 |
-
dual_cross_attention: bool = False,
|
1054 |
-
use_linear_projection: bool = False,
|
1055 |
-
only_cross_attention: bool = False,
|
1056 |
-
upcast_attention: bool = False,
|
1057 |
-
attention_type: str = "default",
|
1058 |
-
extract_self_attention_kv: bool = False,
|
1059 |
-
extract_cross_attention_kv: bool = False,
|
1060 |
-
):
|
1061 |
-
super().__init__()
|
1062 |
-
resnets = []
|
1063 |
-
attentions = []
|
1064 |
-
|
1065 |
-
self.has_cross_attention = True
|
1066 |
-
self.num_attention_heads = num_attention_heads
|
1067 |
-
|
1068 |
-
if isinstance(transformer_layers_per_block, int):
|
1069 |
-
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
1070 |
-
|
1071 |
-
for i in range(num_layers):
|
1072 |
-
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1073 |
-
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1074 |
-
|
1075 |
-
resnets.append(
|
1076 |
-
ResnetBlock2D(
|
1077 |
-
in_channels=resnet_in_channels + res_skip_channels,
|
1078 |
-
out_channels=out_channels,
|
1079 |
-
temb_channels=temb_channels,
|
1080 |
-
eps=resnet_eps,
|
1081 |
-
groups=resnet_groups,
|
1082 |
-
dropout=dropout,
|
1083 |
-
time_embedding_norm=resnet_time_scale_shift,
|
1084 |
-
non_linearity=resnet_act_fn,
|
1085 |
-
output_scale_factor=output_scale_factor,
|
1086 |
-
pre_norm=resnet_pre_norm,
|
1087 |
-
)
|
1088 |
-
)
|
1089 |
-
if not dual_cross_attention:
|
1090 |
-
attentions.append(
|
1091 |
-
ExtractKVTransformer2DModel(
|
1092 |
-
num_attention_heads,
|
1093 |
-
out_channels // num_attention_heads,
|
1094 |
-
in_channels=out_channels,
|
1095 |
-
num_layers=transformer_layers_per_block[i],
|
1096 |
-
cross_attention_dim=cross_attention_dim,
|
1097 |
-
norm_num_groups=resnet_groups,
|
1098 |
-
use_linear_projection=use_linear_projection,
|
1099 |
-
only_cross_attention=only_cross_attention,
|
1100 |
-
upcast_attention=upcast_attention,
|
1101 |
-
attention_type=attention_type,
|
1102 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
1103 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
1104 |
-
)
|
1105 |
-
)
|
1106 |
-
else:
|
1107 |
-
raise ValueError("Dual cross attention is not supported in ExtractKVCrossAttnUpBlock2D")
|
1108 |
-
self.attentions = nn.ModuleList(attentions)
|
1109 |
-
self.resnets = nn.ModuleList(resnets)
|
1110 |
-
|
1111 |
-
if add_upsample:
|
1112 |
-
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1113 |
-
else:
|
1114 |
-
self.upsamplers = None
|
1115 |
-
|
1116 |
-
self.gradient_checkpointing = False
|
1117 |
-
self.resolution_idx = resolution_idx
|
1118 |
-
|
1119 |
-
def forward(
|
1120 |
-
self,
|
1121 |
-
hidden_states: torch.FloatTensor,
|
1122 |
-
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1123 |
-
temb: Optional[torch.FloatTensor] = None,
|
1124 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1125 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1126 |
-
upsample_size: Optional[int] = None,
|
1127 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
1128 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1129 |
-
) -> torch.FloatTensor:
|
1130 |
-
if cross_attention_kwargs is not None:
|
1131 |
-
if cross_attention_kwargs.get("scale", None) is not None:
|
1132 |
-
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
1133 |
-
|
1134 |
-
is_freeu_enabled = (
|
1135 |
-
getattr(self, "s1", None)
|
1136 |
-
and getattr(self, "s2", None)
|
1137 |
-
and getattr(self, "b1", None)
|
1138 |
-
and getattr(self, "b2", None)
|
1139 |
-
)
|
1140 |
-
|
1141 |
-
extracted_kvs = {}
|
1142 |
-
for resnet, attn in zip(self.resnets, self.attentions):
|
1143 |
-
# pop res hidden states
|
1144 |
-
res_hidden_states = res_hidden_states_tuple[-1]
|
1145 |
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1146 |
-
|
1147 |
-
# FreeU: Only operate on the first two stages
|
1148 |
-
if is_freeu_enabled:
|
1149 |
-
hidden_states, res_hidden_states = apply_freeu(
|
1150 |
-
self.resolution_idx,
|
1151 |
-
hidden_states,
|
1152 |
-
res_hidden_states,
|
1153 |
-
s1=self.s1,
|
1154 |
-
s2=self.s2,
|
1155 |
-
b1=self.b1,
|
1156 |
-
b2=self.b2,
|
1157 |
-
)
|
1158 |
-
|
1159 |
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1160 |
-
|
1161 |
-
if self.training and self.gradient_checkpointing:
|
1162 |
-
|
1163 |
-
def create_custom_forward(module, return_dict=None):
|
1164 |
-
def custom_forward(*inputs):
|
1165 |
-
if return_dict is not None:
|
1166 |
-
return module(*inputs, return_dict=return_dict)
|
1167 |
-
else:
|
1168 |
-
return module(*inputs)
|
1169 |
-
|
1170 |
-
return custom_forward
|
1171 |
-
|
1172 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1173 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1174 |
-
create_custom_forward(resnet),
|
1175 |
-
hidden_states,
|
1176 |
-
temb,
|
1177 |
-
**ckpt_kwargs,
|
1178 |
-
)
|
1179 |
-
hidden_states, extracted_kv = attn(
|
1180 |
-
hidden_states,
|
1181 |
-
timestep=temb,
|
1182 |
-
encoder_hidden_states=encoder_hidden_states,
|
1183 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1184 |
-
attention_mask=attention_mask,
|
1185 |
-
encoder_attention_mask=encoder_attention_mask,
|
1186 |
-
return_dict=False,
|
1187 |
-
)
|
1188 |
-
else:
|
1189 |
-
hidden_states = resnet(hidden_states, temb)
|
1190 |
-
hidden_states, extracted_kv = attn(
|
1191 |
-
hidden_states,
|
1192 |
-
timestep=temb,
|
1193 |
-
encoder_hidden_states=encoder_hidden_states,
|
1194 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1195 |
-
attention_mask=attention_mask,
|
1196 |
-
encoder_attention_mask=encoder_attention_mask,
|
1197 |
-
return_dict=False,
|
1198 |
-
)
|
1199 |
-
|
1200 |
-
extracted_kvs.update(extracted_kv)
|
1201 |
-
|
1202 |
-
if self.upsamplers is not None:
|
1203 |
-
for upsampler in self.upsamplers:
|
1204 |
-
hidden_states = upsampler(hidden_states, upsample_size)
|
1205 |
-
|
1206 |
-
return hidden_states, extracted_kvs
|
1207 |
-
|
1208 |
-
def init_kv_extraction(self):
|
1209 |
-
for block in self.attentions:
|
1210 |
-
block.init_kv_extraction()
|
1211 |
-
|
1212 |
-
|
1213 |
-
class DownBlock2D(nn.Module):
|
1214 |
-
def __init__(
|
1215 |
-
self,
|
1216 |
-
in_channels: int,
|
1217 |
-
out_channels: int,
|
1218 |
-
temb_channels: int,
|
1219 |
-
dropout: float = 0.0,
|
1220 |
-
num_layers: int = 1,
|
1221 |
-
resnet_eps: float = 1e-6,
|
1222 |
-
resnet_time_scale_shift: str = "default",
|
1223 |
-
resnet_act_fn: str = "swish",
|
1224 |
-
resnet_groups: int = 32,
|
1225 |
-
resnet_pre_norm: bool = True,
|
1226 |
-
output_scale_factor: float = 1.0,
|
1227 |
-
add_downsample: bool = True,
|
1228 |
-
downsample_padding: int = 1,
|
1229 |
-
):
|
1230 |
-
super().__init__()
|
1231 |
-
resnets = []
|
1232 |
-
|
1233 |
-
for i in range(num_layers):
|
1234 |
-
in_channels = in_channels if i == 0 else out_channels
|
1235 |
-
resnets.append(
|
1236 |
-
ResnetBlock2D(
|
1237 |
-
in_channels=in_channels,
|
1238 |
-
out_channels=out_channels,
|
1239 |
-
temb_channels=temb_channels,
|
1240 |
-
eps=resnet_eps,
|
1241 |
-
groups=resnet_groups,
|
1242 |
-
dropout=dropout,
|
1243 |
-
time_embedding_norm=resnet_time_scale_shift,
|
1244 |
-
non_linearity=resnet_act_fn,
|
1245 |
-
output_scale_factor=output_scale_factor,
|
1246 |
-
pre_norm=resnet_pre_norm,
|
1247 |
-
)
|
1248 |
-
)
|
1249 |
-
|
1250 |
-
self.resnets = nn.ModuleList(resnets)
|
1251 |
-
|
1252 |
-
if add_downsample:
|
1253 |
-
self.downsamplers = nn.ModuleList(
|
1254 |
-
[
|
1255 |
-
Downsample2D(
|
1256 |
-
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
1257 |
-
)
|
1258 |
-
]
|
1259 |
-
)
|
1260 |
-
else:
|
1261 |
-
self.downsamplers = None
|
1262 |
-
|
1263 |
-
self.gradient_checkpointing = False
|
1264 |
-
|
1265 |
-
def forward(
|
1266 |
-
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs
|
1267 |
-
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
1268 |
-
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
1269 |
-
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
1270 |
-
deprecate("scale", "1.0.0", deprecation_message)
|
1271 |
-
|
1272 |
-
output_states = ()
|
1273 |
-
|
1274 |
-
for resnet in self.resnets:
|
1275 |
-
if self.training and self.gradient_checkpointing:
|
1276 |
-
|
1277 |
-
def create_custom_forward(module):
|
1278 |
-
def custom_forward(*inputs):
|
1279 |
-
return module(*inputs)
|
1280 |
-
|
1281 |
-
return custom_forward
|
1282 |
-
|
1283 |
-
if is_torch_version(">=", "1.11.0"):
|
1284 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1285 |
-
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
1286 |
-
)
|
1287 |
-
else:
|
1288 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1289 |
-
create_custom_forward(resnet), hidden_states, temb
|
1290 |
-
)
|
1291 |
-
else:
|
1292 |
-
hidden_states = resnet(hidden_states, temb)
|
1293 |
-
|
1294 |
-
output_states = output_states + (hidden_states,)
|
1295 |
-
|
1296 |
-
if self.downsamplers is not None:
|
1297 |
-
for downsampler in self.downsamplers:
|
1298 |
-
hidden_states = downsampler(hidden_states)
|
1299 |
-
|
1300 |
-
output_states = output_states + (hidden_states,)
|
1301 |
-
|
1302 |
-
return hidden_states, output_states
|
1303 |
-
|
1304 |
-
|
1305 |
-
class UpBlock2D(nn.Module):
|
1306 |
-
def __init__(
|
1307 |
-
self,
|
1308 |
-
in_channels: int,
|
1309 |
-
prev_output_channel: int,
|
1310 |
-
out_channels: int,
|
1311 |
-
temb_channels: int,
|
1312 |
-
resolution_idx: Optional[int] = None,
|
1313 |
-
dropout: float = 0.0,
|
1314 |
-
num_layers: int = 1,
|
1315 |
-
resnet_eps: float = 1e-6,
|
1316 |
-
resnet_time_scale_shift: str = "default",
|
1317 |
-
resnet_act_fn: str = "swish",
|
1318 |
-
resnet_groups: int = 32,
|
1319 |
-
resnet_pre_norm: bool = True,
|
1320 |
-
output_scale_factor: float = 1.0,
|
1321 |
-
add_upsample: bool = True,
|
1322 |
-
):
|
1323 |
-
super().__init__()
|
1324 |
-
resnets = []
|
1325 |
-
|
1326 |
-
for i in range(num_layers):
|
1327 |
-
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1328 |
-
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1329 |
-
|
1330 |
-
resnets.append(
|
1331 |
-
ResnetBlock2D(
|
1332 |
-
in_channels=resnet_in_channels + res_skip_channels,
|
1333 |
-
out_channels=out_channels,
|
1334 |
-
temb_channels=temb_channels,
|
1335 |
-
eps=resnet_eps,
|
1336 |
-
groups=resnet_groups,
|
1337 |
-
dropout=dropout,
|
1338 |
-
time_embedding_norm=resnet_time_scale_shift,
|
1339 |
-
non_linearity=resnet_act_fn,
|
1340 |
-
output_scale_factor=output_scale_factor,
|
1341 |
-
pre_norm=resnet_pre_norm,
|
1342 |
-
)
|
1343 |
-
)
|
1344 |
-
|
1345 |
-
self.resnets = nn.ModuleList(resnets)
|
1346 |
-
|
1347 |
-
if add_upsample:
|
1348 |
-
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1349 |
-
else:
|
1350 |
-
self.upsamplers = None
|
1351 |
-
|
1352 |
-
self.gradient_checkpointing = False
|
1353 |
-
self.resolution_idx = resolution_idx
|
1354 |
-
|
1355 |
-
def forward(
|
1356 |
-
self,
|
1357 |
-
hidden_states: torch.FloatTensor,
|
1358 |
-
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1359 |
-
temb: Optional[torch.FloatTensor] = None,
|
1360 |
-
upsample_size: Optional[int] = None,
|
1361 |
-
*args,
|
1362 |
-
**kwargs,
|
1363 |
-
) -> torch.FloatTensor:
|
1364 |
-
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
1365 |
-
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
1366 |
-
deprecate("scale", "1.0.0", deprecation_message)
|
1367 |
-
|
1368 |
-
is_freeu_enabled = (
|
1369 |
-
getattr(self, "s1", None)
|
1370 |
-
and getattr(self, "s2", None)
|
1371 |
-
and getattr(self, "b1", None)
|
1372 |
-
and getattr(self, "b2", None)
|
1373 |
-
)
|
1374 |
-
|
1375 |
-
for resnet in self.resnets:
|
1376 |
-
# pop res hidden states
|
1377 |
-
res_hidden_states = res_hidden_states_tuple[-1]
|
1378 |
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1379 |
-
|
1380 |
-
# FreeU: Only operate on the first two stages
|
1381 |
-
if is_freeu_enabled:
|
1382 |
-
hidden_states, res_hidden_states = apply_freeu(
|
1383 |
-
self.resolution_idx,
|
1384 |
-
hidden_states,
|
1385 |
-
res_hidden_states,
|
1386 |
-
s1=self.s1,
|
1387 |
-
s2=self.s2,
|
1388 |
-
b1=self.b1,
|
1389 |
-
b2=self.b2,
|
1390 |
-
)
|
1391 |
-
|
1392 |
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1393 |
-
|
1394 |
-
if self.training and self.gradient_checkpointing:
|
1395 |
-
|
1396 |
-
def create_custom_forward(module):
|
1397 |
-
def custom_forward(*inputs):
|
1398 |
-
return module(*inputs)
|
1399 |
-
|
1400 |
-
return custom_forward
|
1401 |
-
|
1402 |
-
if is_torch_version(">=", "1.11.0"):
|
1403 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1404 |
-
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
1405 |
-
)
|
1406 |
-
else:
|
1407 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
1408 |
-
create_custom_forward(resnet), hidden_states, temb
|
1409 |
-
)
|
1410 |
-
else:
|
1411 |
-
hidden_states = resnet(hidden_states, temb)
|
1412 |
-
|
1413 |
-
if self.upsamplers is not None:
|
1414 |
-
for upsampler in self.upsamplers:
|
1415 |
-
hidden_states = upsampler(hidden_states, upsample_size)
|
1416 |
-
|
1417 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module/unet/unet_2d_extractKV_res.py
DELETED
@@ -1,1589 +0,0 @@
|
|
1 |
-
# Copy from diffusers.models.unets.unet_2d_condition.py
|
2 |
-
|
3 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn as nn
|
21 |
-
import torch.utils.checkpoint
|
22 |
-
|
23 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
-
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
25 |
-
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
26 |
-
from diffusers.models.activations import get_activation
|
27 |
-
from diffusers.models.attention_processor import (
|
28 |
-
ADDED_KV_ATTENTION_PROCESSORS,
|
29 |
-
CROSS_ATTENTION_PROCESSORS,
|
30 |
-
Attention,
|
31 |
-
AttentionProcessor,
|
32 |
-
AttnAddedKVProcessor,
|
33 |
-
AttnProcessor,
|
34 |
-
)
|
35 |
-
from diffusers.models.embeddings import (
|
36 |
-
GaussianFourierProjection,
|
37 |
-
GLIGENTextBoundingboxProjection,
|
38 |
-
ImageHintTimeEmbedding,
|
39 |
-
ImageProjection,
|
40 |
-
ImageTimeEmbedding,
|
41 |
-
TextImageProjection,
|
42 |
-
TextImageTimeEmbedding,
|
43 |
-
TextTimeEmbedding,
|
44 |
-
TimestepEmbedding,
|
45 |
-
Timesteps,
|
46 |
-
)
|
47 |
-
from diffusers.models.modeling_utils import ModelMixin
|
48 |
-
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
49 |
-
from .unet_2d_extractKV_blocks import (
|
50 |
-
get_down_block,
|
51 |
-
get_mid_block,
|
52 |
-
get_up_block,
|
53 |
-
)
|
54 |
-
|
55 |
-
|
56 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
57 |
-
|
58 |
-
|
59 |
-
@dataclass
|
60 |
-
class ExtractKVUNet2DConditionOutput(BaseOutput):
|
61 |
-
"""
|
62 |
-
The output of [`UNet2DConditionModel`].
|
63 |
-
|
64 |
-
Args:
|
65 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
66 |
-
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
67 |
-
"""
|
68 |
-
|
69 |
-
sample: torch.FloatTensor = None
|
70 |
-
cached_kvs: Dict[str, Any] = None
|
71 |
-
down_block_res_samples: Tuple[torch.Tensor] = None
|
72 |
-
mid_block_res_sample: torch.Tensor = None
|
73 |
-
|
74 |
-
|
75 |
-
def zero_module(module):
|
76 |
-
for p in module.parameters():
|
77 |
-
nn.init.zeros_(p)
|
78 |
-
return module
|
79 |
-
|
80 |
-
|
81 |
-
class ControlNetConditioningEmbedding(nn.Module):
|
82 |
-
"""
|
83 |
-
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
84 |
-
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
85 |
-
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
86 |
-
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
87 |
-
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
88 |
-
model) to encode image-space conditions ... into feature maps ..."
|
89 |
-
"""
|
90 |
-
|
91 |
-
def __init__(
|
92 |
-
self,
|
93 |
-
conditioning_embedding_channels: int,
|
94 |
-
conditioning_channels: int = 3,
|
95 |
-
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
96 |
-
):
|
97 |
-
super().__init__()
|
98 |
-
|
99 |
-
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
100 |
-
|
101 |
-
self.blocks = nn.ModuleList([])
|
102 |
-
|
103 |
-
for i in range(len(block_out_channels) - 1):
|
104 |
-
channel_in = block_out_channels[i]
|
105 |
-
channel_out = block_out_channels[i + 1]
|
106 |
-
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
107 |
-
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
108 |
-
|
109 |
-
self.conv_out = zero_module(
|
110 |
-
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
111 |
-
)
|
112 |
-
|
113 |
-
def forward(self, conditioning):
|
114 |
-
embedding = self.conv_in(conditioning)
|
115 |
-
embedding = F.silu(embedding)
|
116 |
-
|
117 |
-
for block in self.blocks:
|
118 |
-
embedding = block(embedding)
|
119 |
-
embedding = F.silu(embedding)
|
120 |
-
|
121 |
-
embedding = self.conv_out(embedding)
|
122 |
-
|
123 |
-
return embedding
|
124 |
-
|
125 |
-
|
126 |
-
class ExtractKVUNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
|
127 |
-
r"""
|
128 |
-
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
129 |
-
shaped output.
|
130 |
-
|
131 |
-
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
132 |
-
for all models (such as downloading or saving).
|
133 |
-
|
134 |
-
Parameters:
|
135 |
-
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
136 |
-
Height and width of input/output sample.
|
137 |
-
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
138 |
-
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
139 |
-
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
140 |
-
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
141 |
-
Whether to flip the sin to cos in the time embedding.
|
142 |
-
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
143 |
-
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
144 |
-
The tuple of downsample blocks to use.
|
145 |
-
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
146 |
-
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
147 |
-
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
148 |
-
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
149 |
-
The tuple of upsample blocks to use.
|
150 |
-
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
151 |
-
Whether to include self-attention in the basic transformer blocks, see
|
152 |
-
[`~models.attention.BasicTransformerBlock`].
|
153 |
-
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
154 |
-
The tuple of output channels for each block.
|
155 |
-
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
156 |
-
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
157 |
-
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
158 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
159 |
-
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
160 |
-
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
161 |
-
If `None`, normalization and activation layers is skipped in post-processing.
|
162 |
-
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
163 |
-
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
164 |
-
The dimension of the cross attention features.
|
165 |
-
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
166 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
167 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
168 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
169 |
-
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
170 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
171 |
-
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
172 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
173 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
174 |
-
encoder_hid_dim (`int`, *optional*, defaults to None):
|
175 |
-
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
176 |
-
dimension to `cross_attention_dim`.
|
177 |
-
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
178 |
-
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
179 |
-
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
180 |
-
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
181 |
-
num_attention_heads (`int`, *optional*):
|
182 |
-
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
183 |
-
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
184 |
-
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
185 |
-
class_embed_type (`str`, *optional*, defaults to `None`):
|
186 |
-
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
187 |
-
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
188 |
-
addition_embed_type (`str`, *optional*, defaults to `None`):
|
189 |
-
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
190 |
-
"text". "text" will use the `TextTimeEmbedding` layer.
|
191 |
-
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
192 |
-
Dimension for the timestep embeddings.
|
193 |
-
num_class_embeds (`int`, *optional*, defaults to `None`):
|
194 |
-
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
195 |
-
class conditioning with `class_embed_type` equal to `None`.
|
196 |
-
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
197 |
-
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
198 |
-
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
199 |
-
An optional override for the dimension of the projected time embedding.
|
200 |
-
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
201 |
-
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
202 |
-
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
203 |
-
timestep_post_act (`str`, *optional*, defaults to `None`):
|
204 |
-
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
205 |
-
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
206 |
-
The dimension of `cond_proj` layer in the timestep embedding.
|
207 |
-
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
208 |
-
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
209 |
-
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
210 |
-
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
211 |
-
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
212 |
-
embeddings with the class embeddings.
|
213 |
-
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
214 |
-
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
215 |
-
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
216 |
-
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
217 |
-
otherwise.
|
218 |
-
"""
|
219 |
-
|
220 |
-
_supports_gradient_checkpointing = True
|
221 |
-
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
|
222 |
-
|
223 |
-
@register_to_config
|
224 |
-
def __init__(
|
225 |
-
self,
|
226 |
-
sample_size: Optional[int] = None,
|
227 |
-
in_channels: int = 4,
|
228 |
-
out_channels: int = 4,
|
229 |
-
conditioning_channels: int = 3,
|
230 |
-
center_input_sample: bool = False,
|
231 |
-
flip_sin_to_cos: bool = True,
|
232 |
-
freq_shift: int = 0,
|
233 |
-
down_block_types: Tuple[str] = (
|
234 |
-
"CrossAttnDownBlock2D",
|
235 |
-
"CrossAttnDownBlock2D",
|
236 |
-
"CrossAttnDownBlock2D",
|
237 |
-
"DownBlock2D",
|
238 |
-
),
|
239 |
-
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
240 |
-
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
241 |
-
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
242 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
243 |
-
layers_per_block: Union[int, Tuple[int]] = 2,
|
244 |
-
downsample_padding: int = 1,
|
245 |
-
mid_block_scale_factor: float = 1,
|
246 |
-
dropout: float = 0.0,
|
247 |
-
act_fn: str = "silu",
|
248 |
-
norm_num_groups: Optional[int] = 32,
|
249 |
-
norm_eps: float = 1e-5,
|
250 |
-
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
251 |
-
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
252 |
-
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
253 |
-
encoder_hid_dim: Optional[int] = None,
|
254 |
-
encoder_hid_dim_type: Optional[str] = None,
|
255 |
-
attention_head_dim: Union[int, Tuple[int]] = 8,
|
256 |
-
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
257 |
-
dual_cross_attention: bool = False,
|
258 |
-
use_linear_projection: bool = False,
|
259 |
-
class_embed_type: Optional[str] = None,
|
260 |
-
addition_embed_type: Optional[str] = None,
|
261 |
-
addition_time_embed_dim: Optional[int] = None,
|
262 |
-
num_class_embeds: Optional[int] = None,
|
263 |
-
upcast_attention: bool = False,
|
264 |
-
resnet_time_scale_shift: str = "default",
|
265 |
-
resnet_skip_time_act: bool = False,
|
266 |
-
resnet_out_scale_factor: float = 1.0,
|
267 |
-
time_embedding_type: str = "positional",
|
268 |
-
time_embedding_dim: Optional[int] = None,
|
269 |
-
time_embedding_act_fn: Optional[str] = None,
|
270 |
-
timestep_post_act: Optional[str] = None,
|
271 |
-
time_cond_proj_dim: Optional[int] = None,
|
272 |
-
conv_in_kernel: int = 3,
|
273 |
-
conv_out_kernel: int = 3,
|
274 |
-
projection_class_embeddings_input_dim: Optional[int] = None,
|
275 |
-
controlnet_conditioning_channel_order: str = "rgb",
|
276 |
-
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
277 |
-
attention_type: str = "default",
|
278 |
-
class_embeddings_concat: bool = False,
|
279 |
-
mid_block_only_cross_attention: Optional[bool] = None,
|
280 |
-
cross_attention_norm: Optional[str] = None,
|
281 |
-
addition_embed_type_num_heads: int = 64,
|
282 |
-
extract_self_attention_kv: bool = True,
|
283 |
-
extract_cross_attention_kv: bool = True,
|
284 |
-
):
|
285 |
-
super().__init__()
|
286 |
-
|
287 |
-
self.sample_size = sample_size
|
288 |
-
|
289 |
-
if num_attention_heads is not None:
|
290 |
-
raise ValueError(
|
291 |
-
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
292 |
-
)
|
293 |
-
|
294 |
-
# If `num_attention_heads` is not defined (which is the case for most models)
|
295 |
-
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
296 |
-
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
297 |
-
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
298 |
-
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
299 |
-
# which is why we correct for the naming here.
|
300 |
-
num_attention_heads = num_attention_heads or attention_head_dim
|
301 |
-
|
302 |
-
# Check inputs
|
303 |
-
self._check_config(
|
304 |
-
down_block_types=down_block_types,
|
305 |
-
up_block_types=up_block_types,
|
306 |
-
only_cross_attention=only_cross_attention,
|
307 |
-
block_out_channels=block_out_channels,
|
308 |
-
layers_per_block=layers_per_block,
|
309 |
-
cross_attention_dim=cross_attention_dim,
|
310 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
311 |
-
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
312 |
-
attention_head_dim=attention_head_dim,
|
313 |
-
num_attention_heads=num_attention_heads,
|
314 |
-
)
|
315 |
-
|
316 |
-
# input
|
317 |
-
conv_in_padding = (conv_in_kernel - 1) // 2
|
318 |
-
self.conv_in = nn.Conv2d(
|
319 |
-
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
320 |
-
)
|
321 |
-
|
322 |
-
# time
|
323 |
-
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
324 |
-
time_embedding_type,
|
325 |
-
block_out_channels=block_out_channels,
|
326 |
-
flip_sin_to_cos=flip_sin_to_cos,
|
327 |
-
freq_shift=freq_shift,
|
328 |
-
time_embedding_dim=time_embedding_dim,
|
329 |
-
)
|
330 |
-
|
331 |
-
self.time_embedding = TimestepEmbedding(
|
332 |
-
timestep_input_dim,
|
333 |
-
time_embed_dim,
|
334 |
-
act_fn=act_fn,
|
335 |
-
post_act_fn=timestep_post_act,
|
336 |
-
cond_proj_dim=time_cond_proj_dim,
|
337 |
-
)
|
338 |
-
|
339 |
-
self._set_encoder_hid_proj(
|
340 |
-
encoder_hid_dim_type,
|
341 |
-
cross_attention_dim=cross_attention_dim,
|
342 |
-
encoder_hid_dim=encoder_hid_dim,
|
343 |
-
)
|
344 |
-
|
345 |
-
# class embedding
|
346 |
-
self._set_class_embedding(
|
347 |
-
class_embed_type,
|
348 |
-
act_fn=act_fn,
|
349 |
-
num_class_embeds=num_class_embeds,
|
350 |
-
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
351 |
-
time_embed_dim=time_embed_dim,
|
352 |
-
timestep_input_dim=timestep_input_dim,
|
353 |
-
)
|
354 |
-
|
355 |
-
self._set_add_embedding(
|
356 |
-
addition_embed_type,
|
357 |
-
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
358 |
-
addition_time_embed_dim=addition_time_embed_dim,
|
359 |
-
cross_attention_dim=cross_attention_dim,
|
360 |
-
encoder_hid_dim=encoder_hid_dim,
|
361 |
-
flip_sin_to_cos=flip_sin_to_cos,
|
362 |
-
freq_shift=freq_shift,
|
363 |
-
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
364 |
-
time_embed_dim=time_embed_dim,
|
365 |
-
)
|
366 |
-
|
367 |
-
if time_embedding_act_fn is None:
|
368 |
-
self.time_embed_act = None
|
369 |
-
else:
|
370 |
-
self.time_embed_act = get_activation(time_embedding_act_fn)
|
371 |
-
|
372 |
-
# control net conditioning embedding
|
373 |
-
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
374 |
-
conditioning_embedding_channels=block_out_channels[0],
|
375 |
-
block_out_channels=conditioning_embedding_out_channels,
|
376 |
-
conditioning_channels=conditioning_channels,
|
377 |
-
)
|
378 |
-
|
379 |
-
self.down_blocks = nn.ModuleList([])
|
380 |
-
self.controlnet_down_blocks = nn.ModuleList([])
|
381 |
-
self.up_blocks = nn.ModuleList([])
|
382 |
-
# self.controlnet_up_blocks = nn.ModuleList([])
|
383 |
-
|
384 |
-
if isinstance(only_cross_attention, bool):
|
385 |
-
if mid_block_only_cross_attention is None:
|
386 |
-
mid_block_only_cross_attention = only_cross_attention
|
387 |
-
|
388 |
-
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
389 |
-
|
390 |
-
if mid_block_only_cross_attention is None:
|
391 |
-
mid_block_only_cross_attention = False
|
392 |
-
|
393 |
-
if isinstance(num_attention_heads, int):
|
394 |
-
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
395 |
-
|
396 |
-
if isinstance(attention_head_dim, int):
|
397 |
-
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
398 |
-
|
399 |
-
if isinstance(cross_attention_dim, int):
|
400 |
-
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
401 |
-
|
402 |
-
if isinstance(layers_per_block, int):
|
403 |
-
layers_per_block = [layers_per_block] * len(down_block_types)
|
404 |
-
|
405 |
-
if isinstance(transformer_layers_per_block, int):
|
406 |
-
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
407 |
-
|
408 |
-
if class_embeddings_concat:
|
409 |
-
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
410 |
-
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
411 |
-
# regular time embeddings
|
412 |
-
blocks_time_embed_dim = time_embed_dim * 2
|
413 |
-
else:
|
414 |
-
blocks_time_embed_dim = time_embed_dim
|
415 |
-
|
416 |
-
# down
|
417 |
-
output_channel = block_out_channels[0]
|
418 |
-
|
419 |
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
420 |
-
controlnet_block = zero_module(controlnet_block)
|
421 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
422 |
-
|
423 |
-
for i, down_block_type in enumerate(down_block_types):
|
424 |
-
input_channel = output_channel
|
425 |
-
output_channel = block_out_channels[i]
|
426 |
-
is_final_block = i == len(block_out_channels) - 1
|
427 |
-
|
428 |
-
down_block = get_down_block(
|
429 |
-
down_block_type,
|
430 |
-
num_layers=layers_per_block[i],
|
431 |
-
transformer_layers_per_block=transformer_layers_per_block[i],
|
432 |
-
in_channels=input_channel,
|
433 |
-
out_channels=output_channel,
|
434 |
-
temb_channels=blocks_time_embed_dim,
|
435 |
-
add_downsample=not is_final_block,
|
436 |
-
resnet_eps=norm_eps,
|
437 |
-
resnet_act_fn=act_fn,
|
438 |
-
resnet_groups=norm_num_groups,
|
439 |
-
cross_attention_dim=cross_attention_dim[i],
|
440 |
-
num_attention_heads=num_attention_heads[i],
|
441 |
-
downsample_padding=downsample_padding,
|
442 |
-
dual_cross_attention=dual_cross_attention,
|
443 |
-
use_linear_projection=use_linear_projection,
|
444 |
-
only_cross_attention=only_cross_attention[i],
|
445 |
-
upcast_attention=upcast_attention,
|
446 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
447 |
-
attention_type=attention_type,
|
448 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
449 |
-
resnet_out_scale_factor=resnet_out_scale_factor,
|
450 |
-
cross_attention_norm=cross_attention_norm,
|
451 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
452 |
-
dropout=dropout,
|
453 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
454 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
455 |
-
)
|
456 |
-
self.down_blocks.append(down_block)
|
457 |
-
|
458 |
-
for _ in range(layers_per_block):
|
459 |
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
460 |
-
controlnet_block = zero_module(controlnet_block)
|
461 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
462 |
-
|
463 |
-
if not is_final_block:
|
464 |
-
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
465 |
-
controlnet_block = zero_module(controlnet_block)
|
466 |
-
self.controlnet_down_blocks.append(controlnet_block)
|
467 |
-
|
468 |
-
# mid
|
469 |
-
mid_block_channel = block_out_channels[-1]
|
470 |
-
|
471 |
-
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
472 |
-
controlnet_block = zero_module(controlnet_block)
|
473 |
-
self.controlnet_mid_block = controlnet_block
|
474 |
-
|
475 |
-
self.mid_block = get_mid_block(
|
476 |
-
mid_block_type,
|
477 |
-
temb_channels=blocks_time_embed_dim,
|
478 |
-
in_channels=block_out_channels[-1],
|
479 |
-
resnet_eps=norm_eps,
|
480 |
-
resnet_act_fn=act_fn,
|
481 |
-
resnet_groups=norm_num_groups,
|
482 |
-
output_scale_factor=mid_block_scale_factor,
|
483 |
-
transformer_layers_per_block=transformer_layers_per_block[-1],
|
484 |
-
num_attention_heads=num_attention_heads[-1],
|
485 |
-
cross_attention_dim=cross_attention_dim[-1],
|
486 |
-
dual_cross_attention=dual_cross_attention,
|
487 |
-
use_linear_projection=use_linear_projection,
|
488 |
-
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
489 |
-
upcast_attention=upcast_attention,
|
490 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
491 |
-
attention_type=attention_type,
|
492 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
493 |
-
cross_attention_norm=cross_attention_norm,
|
494 |
-
attention_head_dim=attention_head_dim[-1],
|
495 |
-
dropout=dropout,
|
496 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
497 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
498 |
-
)
|
499 |
-
|
500 |
-
# count how many layers upsample the images
|
501 |
-
self.num_upsamplers = 0
|
502 |
-
|
503 |
-
# up
|
504 |
-
reversed_block_out_channels = list(reversed(block_out_channels))
|
505 |
-
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
506 |
-
reversed_layers_per_block = list(reversed(layers_per_block))
|
507 |
-
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
508 |
-
reversed_transformer_layers_per_block = (
|
509 |
-
list(reversed(transformer_layers_per_block))
|
510 |
-
if reverse_transformer_layers_per_block is None
|
511 |
-
else reverse_transformer_layers_per_block
|
512 |
-
)
|
513 |
-
only_cross_attention = list(reversed(only_cross_attention))
|
514 |
-
|
515 |
-
output_channel = reversed_block_out_channels[0]
|
516 |
-
for i, up_block_type in enumerate(up_block_types):
|
517 |
-
is_final_block = i == len(block_out_channels) - 1
|
518 |
-
|
519 |
-
prev_output_channel = output_channel
|
520 |
-
output_channel = reversed_block_out_channels[i]
|
521 |
-
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
522 |
-
|
523 |
-
# add upsample block for all BUT final layer
|
524 |
-
if not is_final_block:
|
525 |
-
add_upsample = True
|
526 |
-
self.num_upsamplers += 1
|
527 |
-
else:
|
528 |
-
add_upsample = False
|
529 |
-
|
530 |
-
up_block = get_up_block(
|
531 |
-
up_block_type,
|
532 |
-
num_layers=reversed_layers_per_block[i] + 1,
|
533 |
-
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
534 |
-
in_channels=input_channel,
|
535 |
-
out_channels=output_channel,
|
536 |
-
prev_output_channel=prev_output_channel,
|
537 |
-
temb_channels=blocks_time_embed_dim,
|
538 |
-
add_upsample=add_upsample,
|
539 |
-
resnet_eps=norm_eps,
|
540 |
-
resnet_act_fn=act_fn,
|
541 |
-
resolution_idx=i,
|
542 |
-
resnet_groups=norm_num_groups,
|
543 |
-
cross_attention_dim=reversed_cross_attention_dim[i],
|
544 |
-
num_attention_heads=reversed_num_attention_heads[i],
|
545 |
-
dual_cross_attention=dual_cross_attention,
|
546 |
-
use_linear_projection=use_linear_projection,
|
547 |
-
only_cross_attention=only_cross_attention[i],
|
548 |
-
upcast_attention=upcast_attention,
|
549 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
550 |
-
attention_type=attention_type,
|
551 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
552 |
-
resnet_out_scale_factor=resnet_out_scale_factor,
|
553 |
-
cross_attention_norm=cross_attention_norm,
|
554 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
555 |
-
dropout=dropout,
|
556 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
557 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
558 |
-
)
|
559 |
-
self.up_blocks.append(up_block)
|
560 |
-
prev_output_channel = output_channel
|
561 |
-
|
562 |
-
# for _ in range(layers_per_block):
|
563 |
-
# controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
564 |
-
# controlnet_block = zero_module(controlnet_block)
|
565 |
-
# self.controlnet_up_blocks.append(controlnet_block)
|
566 |
-
|
567 |
-
# if not is_final_block:
|
568 |
-
# controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
569 |
-
# controlnet_block = zero_module(controlnet_block)
|
570 |
-
# self.controlnet_up_blocks.append(controlnet_block)
|
571 |
-
|
572 |
-
# out
|
573 |
-
if norm_num_groups is not None:
|
574 |
-
self.conv_norm_out = nn.GroupNorm(
|
575 |
-
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
576 |
-
)
|
577 |
-
|
578 |
-
self.conv_act = get_activation(act_fn)
|
579 |
-
|
580 |
-
else:
|
581 |
-
self.conv_norm_out = None
|
582 |
-
self.conv_act = None
|
583 |
-
|
584 |
-
conv_out_padding = (conv_out_kernel - 1) // 2
|
585 |
-
self.conv_out = nn.Conv2d(
|
586 |
-
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
587 |
-
)
|
588 |
-
|
589 |
-
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
590 |
-
|
591 |
-
@classmethod
|
592 |
-
def from_unet(
|
593 |
-
cls,
|
594 |
-
unet: UNet2DConditionModel,
|
595 |
-
controlnet_conditioning_channel_order: str = "rgb",
|
596 |
-
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
597 |
-
load_weights_from_unet: bool = True,
|
598 |
-
conditioning_channels: int = 3,
|
599 |
-
extract_self_attention_kv: bool = True,
|
600 |
-
extract_cross_attention_kv: bool = True,
|
601 |
-
):
|
602 |
-
r"""
|
603 |
-
Instantiate a [`ExtractKVUNet2DConditionModel`] from [`UNet2DConditionModel`].
|
604 |
-
|
605 |
-
Parameters:
|
606 |
-
unet (`UNet2DConditionModel`):
|
607 |
-
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
608 |
-
where applicable.
|
609 |
-
"""
|
610 |
-
transformer_layers_per_block = (
|
611 |
-
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
612 |
-
)
|
613 |
-
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
614 |
-
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
615 |
-
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
616 |
-
addition_time_embed_dim = (
|
617 |
-
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
618 |
-
)
|
619 |
-
down_block_types = (
|
620 |
-
'DownBlock2D', 'ExtractKVCrossAttnDownBlock2D', 'ExtractKVCrossAttnDownBlock2D'
|
621 |
-
)
|
622 |
-
mid_block_type = 'ExtractKVUNetMidBlock2DCrossAttn'
|
623 |
-
up_block_types = (
|
624 |
-
'ExtractKVCrossAttnUpBlock2D', 'ExtractKVCrossAttnUpBlock2D', 'UpBlock2D'
|
625 |
-
)
|
626 |
-
|
627 |
-
refnet = cls(
|
628 |
-
down_block_types=down_block_types,
|
629 |
-
up_block_types=up_block_types,
|
630 |
-
mid_block_type=mid_block_type,
|
631 |
-
encoder_hid_dim=encoder_hid_dim,
|
632 |
-
encoder_hid_dim_type=encoder_hid_dim_type,
|
633 |
-
addition_embed_type=addition_embed_type,
|
634 |
-
addition_time_embed_dim=addition_time_embed_dim,
|
635 |
-
transformer_layers_per_block=transformer_layers_per_block,
|
636 |
-
in_channels=unet.config.in_channels,
|
637 |
-
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
638 |
-
freq_shift=unet.config.freq_shift,
|
639 |
-
only_cross_attention=unet.config.only_cross_attention,
|
640 |
-
block_out_channels=unet.config.block_out_channels,
|
641 |
-
layers_per_block=unet.config.layers_per_block,
|
642 |
-
downsample_padding=unet.config.downsample_padding,
|
643 |
-
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
644 |
-
act_fn=unet.config.act_fn,
|
645 |
-
norm_num_groups=unet.config.norm_num_groups,
|
646 |
-
norm_eps=unet.config.norm_eps,
|
647 |
-
cross_attention_dim=unet.config.cross_attention_dim,
|
648 |
-
attention_head_dim=unet.config.attention_head_dim,
|
649 |
-
num_attention_heads=unet.config.num_attention_heads,
|
650 |
-
use_linear_projection=unet.config.use_linear_projection,
|
651 |
-
class_embed_type=unet.config.class_embed_type,
|
652 |
-
num_class_embeds=unet.config.num_class_embeds,
|
653 |
-
upcast_attention=unet.config.upcast_attention,
|
654 |
-
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
655 |
-
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
656 |
-
mid_block_type=unet.config.mid_block_type,
|
657 |
-
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
658 |
-
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
659 |
-
conditioning_channels=conditioning_channels,
|
660 |
-
extract_self_attention_kv=extract_self_attention_kv,
|
661 |
-
extract_cross_attention_kv=extract_cross_attention_kv,
|
662 |
-
)
|
663 |
-
|
664 |
-
if load_weights_from_unet:
|
665 |
-
def verify_load(missing_keys, unexpected_keys):
|
666 |
-
if len(unexpected_keys) > 0:
|
667 |
-
raise RuntimeError(f"Found unexpected keys in state dict while loading the encoder:\n{unexpected_keys}")
|
668 |
-
|
669 |
-
filtered_missing = [key for key in missing_keys if not "extract_kv" in key]
|
670 |
-
if len(filtered_missing) > 0:
|
671 |
-
raise RuntimeError(f"Missing keys in state dict while loading the encoder:\n{filtered_missing}")
|
672 |
-
refnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
673 |
-
refnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
674 |
-
refnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
675 |
-
|
676 |
-
if refnet.class_embedding:
|
677 |
-
refnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
678 |
-
|
679 |
-
if hasattr(refnet, "add_embedding"):
|
680 |
-
refnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
681 |
-
|
682 |
-
missing_keys, unexpected_keys = refnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
|
683 |
-
verify_load(missing_keys, unexpected_keys)
|
684 |
-
missing_keys, unexpected_keys = refnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
|
685 |
-
verify_load(missing_keys, unexpected_keys)
|
686 |
-
missing_keys, unexpected_keys = refnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False)
|
687 |
-
verify_load(missing_keys, unexpected_keys)
|
688 |
-
|
689 |
-
return refnet
|
690 |
-
|
691 |
-
def _check_config(
|
692 |
-
self,
|
693 |
-
down_block_types: Tuple[str],
|
694 |
-
up_block_types: Tuple[str],
|
695 |
-
only_cross_attention: Union[bool, Tuple[bool]],
|
696 |
-
block_out_channels: Tuple[int],
|
697 |
-
layers_per_block: Union[int, Tuple[int]],
|
698 |
-
cross_attention_dim: Union[int, Tuple[int]],
|
699 |
-
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
700 |
-
reverse_transformer_layers_per_block: bool,
|
701 |
-
attention_head_dim: int,
|
702 |
-
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
703 |
-
):
|
704 |
-
assert "ExtractKVCrossAttnDownBlock2D" in down_block_types, "ExtractKVUNet must have ExtractKVCrossAttnDownBlock2D."
|
705 |
-
assert "ExtractKVCrossAttnUpBlock2D" in up_block_types, "ExtractKVUNet must have ExtractKVCrossAttnUpBlock2D."
|
706 |
-
|
707 |
-
if len(down_block_types) != len(up_block_types):
|
708 |
-
raise ValueError(
|
709 |
-
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
710 |
-
)
|
711 |
-
|
712 |
-
if len(block_out_channels) != len(down_block_types):
|
713 |
-
raise ValueError(
|
714 |
-
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
715 |
-
)
|
716 |
-
|
717 |
-
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
718 |
-
raise ValueError(
|
719 |
-
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
720 |
-
)
|
721 |
-
|
722 |
-
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
723 |
-
raise ValueError(
|
724 |
-
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
725 |
-
)
|
726 |
-
|
727 |
-
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
728 |
-
raise ValueError(
|
729 |
-
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
730 |
-
)
|
731 |
-
|
732 |
-
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
733 |
-
raise ValueError(
|
734 |
-
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
735 |
-
)
|
736 |
-
|
737 |
-
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
738 |
-
raise ValueError(
|
739 |
-
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
740 |
-
)
|
741 |
-
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
742 |
-
for layer_number_per_block in transformer_layers_per_block:
|
743 |
-
if isinstance(layer_number_per_block, list):
|
744 |
-
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
745 |
-
|
746 |
-
def _set_time_proj(
|
747 |
-
self,
|
748 |
-
time_embedding_type: str,
|
749 |
-
block_out_channels: int,
|
750 |
-
flip_sin_to_cos: bool,
|
751 |
-
freq_shift: float,
|
752 |
-
time_embedding_dim: int,
|
753 |
-
) -> Tuple[int, int]:
|
754 |
-
if time_embedding_type == "fourier":
|
755 |
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
756 |
-
if time_embed_dim % 2 != 0:
|
757 |
-
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
758 |
-
self.time_proj = GaussianFourierProjection(
|
759 |
-
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
760 |
-
)
|
761 |
-
timestep_input_dim = time_embed_dim
|
762 |
-
elif time_embedding_type == "positional":
|
763 |
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
764 |
-
|
765 |
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
766 |
-
timestep_input_dim = block_out_channels[0]
|
767 |
-
else:
|
768 |
-
raise ValueError(
|
769 |
-
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
770 |
-
)
|
771 |
-
|
772 |
-
return time_embed_dim, timestep_input_dim
|
773 |
-
|
774 |
-
def _set_encoder_hid_proj(
|
775 |
-
self,
|
776 |
-
encoder_hid_dim_type: Optional[str],
|
777 |
-
cross_attention_dim: Union[int, Tuple[int]],
|
778 |
-
encoder_hid_dim: Optional[int],
|
779 |
-
):
|
780 |
-
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
781 |
-
encoder_hid_dim_type = "text_proj"
|
782 |
-
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
783 |
-
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
784 |
-
|
785 |
-
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
786 |
-
raise ValueError(
|
787 |
-
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
788 |
-
)
|
789 |
-
|
790 |
-
if encoder_hid_dim_type == "text_proj":
|
791 |
-
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
792 |
-
elif encoder_hid_dim_type == "text_image_proj":
|
793 |
-
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
794 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
795 |
-
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
796 |
-
self.encoder_hid_proj = TextImageProjection(
|
797 |
-
text_embed_dim=encoder_hid_dim,
|
798 |
-
image_embed_dim=cross_attention_dim,
|
799 |
-
cross_attention_dim=cross_attention_dim,
|
800 |
-
)
|
801 |
-
elif encoder_hid_dim_type == "image_proj":
|
802 |
-
# Kandinsky 2.2
|
803 |
-
self.encoder_hid_proj = ImageProjection(
|
804 |
-
image_embed_dim=encoder_hid_dim,
|
805 |
-
cross_attention_dim=cross_attention_dim,
|
806 |
-
)
|
807 |
-
elif encoder_hid_dim_type is not None:
|
808 |
-
raise ValueError(
|
809 |
-
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
810 |
-
)
|
811 |
-
else:
|
812 |
-
self.encoder_hid_proj = None
|
813 |
-
|
814 |
-
def _set_class_embedding(
|
815 |
-
self,
|
816 |
-
class_embed_type: Optional[str],
|
817 |
-
act_fn: str,
|
818 |
-
num_class_embeds: Optional[int],
|
819 |
-
projection_class_embeddings_input_dim: Optional[int],
|
820 |
-
time_embed_dim: int,
|
821 |
-
timestep_input_dim: int,
|
822 |
-
):
|
823 |
-
if class_embed_type is None and num_class_embeds is not None:
|
824 |
-
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
825 |
-
elif class_embed_type == "timestep":
|
826 |
-
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
827 |
-
elif class_embed_type == "identity":
|
828 |
-
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
829 |
-
elif class_embed_type == "projection":
|
830 |
-
if projection_class_embeddings_input_dim is None:
|
831 |
-
raise ValueError(
|
832 |
-
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
833 |
-
)
|
834 |
-
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
835 |
-
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
836 |
-
# 2. it projects from an arbitrary input dimension.
|
837 |
-
#
|
838 |
-
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
839 |
-
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
840 |
-
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
841 |
-
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
842 |
-
elif class_embed_type == "simple_projection":
|
843 |
-
if projection_class_embeddings_input_dim is None:
|
844 |
-
raise ValueError(
|
845 |
-
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
846 |
-
)
|
847 |
-
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
848 |
-
else:
|
849 |
-
self.class_embedding = None
|
850 |
-
|
851 |
-
def _set_add_embedding(
|
852 |
-
self,
|
853 |
-
addition_embed_type: str,
|
854 |
-
addition_embed_type_num_heads: int,
|
855 |
-
addition_time_embed_dim: Optional[int],
|
856 |
-
flip_sin_to_cos: bool,
|
857 |
-
freq_shift: float,
|
858 |
-
cross_attention_dim: Optional[int],
|
859 |
-
encoder_hid_dim: Optional[int],
|
860 |
-
projection_class_embeddings_input_dim: Optional[int],
|
861 |
-
time_embed_dim: int,
|
862 |
-
):
|
863 |
-
if addition_embed_type == "text":
|
864 |
-
if encoder_hid_dim is not None:
|
865 |
-
text_time_embedding_from_dim = encoder_hid_dim
|
866 |
-
else:
|
867 |
-
text_time_embedding_from_dim = cross_attention_dim
|
868 |
-
|
869 |
-
self.add_embedding = TextTimeEmbedding(
|
870 |
-
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
871 |
-
)
|
872 |
-
elif addition_embed_type == "text_image":
|
873 |
-
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
874 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
875 |
-
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
876 |
-
self.add_embedding = TextImageTimeEmbedding(
|
877 |
-
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
878 |
-
)
|
879 |
-
elif addition_embed_type == "text_time":
|
880 |
-
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
881 |
-
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
882 |
-
elif addition_embed_type == "image":
|
883 |
-
# Kandinsky 2.2
|
884 |
-
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
885 |
-
elif addition_embed_type == "image_hint":
|
886 |
-
# Kandinsky 2.2 ControlNet
|
887 |
-
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
888 |
-
elif addition_embed_type is not None:
|
889 |
-
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
890 |
-
|
891 |
-
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
892 |
-
if attention_type in ["gated", "gated-text-image"]:
|
893 |
-
positive_len = 768
|
894 |
-
if isinstance(cross_attention_dim, int):
|
895 |
-
positive_len = cross_attention_dim
|
896 |
-
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
897 |
-
positive_len = cross_attention_dim[0]
|
898 |
-
|
899 |
-
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
900 |
-
self.position_net = GLIGENTextBoundingboxProjection(
|
901 |
-
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
902 |
-
)
|
903 |
-
|
904 |
-
@property
|
905 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
906 |
-
r"""
|
907 |
-
Returns:
|
908 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
909 |
-
indexed by its weight name.
|
910 |
-
"""
|
911 |
-
# set recursively
|
912 |
-
processors = {}
|
913 |
-
|
914 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
915 |
-
if hasattr(module, "get_processor"):
|
916 |
-
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
917 |
-
|
918 |
-
for sub_name, child in module.named_children():
|
919 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
920 |
-
|
921 |
-
return processors
|
922 |
-
|
923 |
-
for name, module in self.named_children():
|
924 |
-
fn_recursive_add_processors(name, module, processors)
|
925 |
-
|
926 |
-
return processors
|
927 |
-
|
928 |
-
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
929 |
-
r"""
|
930 |
-
Sets the attention processor to use to compute attention.
|
931 |
-
|
932 |
-
Parameters:
|
933 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
934 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
935 |
-
for **all** `Attention` layers.
|
936 |
-
|
937 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
938 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
939 |
-
|
940 |
-
"""
|
941 |
-
count = len(self.attn_processors.keys())
|
942 |
-
|
943 |
-
if isinstance(processor, dict) and len(processor) != count:
|
944 |
-
raise ValueError(
|
945 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
946 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
947 |
-
)
|
948 |
-
|
949 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
950 |
-
if hasattr(module, "set_processor"):
|
951 |
-
if not isinstance(processor, dict):
|
952 |
-
module.set_processor(processor)
|
953 |
-
else:
|
954 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
955 |
-
|
956 |
-
for sub_name, child in module.named_children():
|
957 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
958 |
-
|
959 |
-
for name, module in self.named_children():
|
960 |
-
fn_recursive_attn_processor(name, module, processor)
|
961 |
-
|
962 |
-
def set_default_attn_processor(self):
|
963 |
-
"""
|
964 |
-
Disables custom attention processors and sets the default attention implementation.
|
965 |
-
"""
|
966 |
-
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
967 |
-
processor = AttnAddedKVProcessor()
|
968 |
-
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
969 |
-
processor = AttnProcessor()
|
970 |
-
else:
|
971 |
-
raise ValueError(
|
972 |
-
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
973 |
-
)
|
974 |
-
|
975 |
-
self.set_attn_processor(processor)
|
976 |
-
|
977 |
-
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
978 |
-
r"""
|
979 |
-
Enable sliced attention computation.
|
980 |
-
|
981 |
-
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
982 |
-
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
983 |
-
|
984 |
-
Args:
|
985 |
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
986 |
-
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
987 |
-
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
988 |
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
989 |
-
must be a multiple of `slice_size`.
|
990 |
-
"""
|
991 |
-
sliceable_head_dims = []
|
992 |
-
|
993 |
-
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
994 |
-
if hasattr(module, "set_attention_slice"):
|
995 |
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
996 |
-
|
997 |
-
for child in module.children():
|
998 |
-
fn_recursive_retrieve_sliceable_dims(child)
|
999 |
-
|
1000 |
-
# retrieve number of attention layers
|
1001 |
-
for module in self.children():
|
1002 |
-
fn_recursive_retrieve_sliceable_dims(module)
|
1003 |
-
|
1004 |
-
num_sliceable_layers = len(sliceable_head_dims)
|
1005 |
-
|
1006 |
-
if slice_size == "auto":
|
1007 |
-
# half the attention head size is usually a good trade-off between
|
1008 |
-
# speed and memory
|
1009 |
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
1010 |
-
elif slice_size == "max":
|
1011 |
-
# make smallest slice possible
|
1012 |
-
slice_size = num_sliceable_layers * [1]
|
1013 |
-
|
1014 |
-
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
1015 |
-
|
1016 |
-
if len(slice_size) != len(sliceable_head_dims):
|
1017 |
-
raise ValueError(
|
1018 |
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
1019 |
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
1020 |
-
)
|
1021 |
-
|
1022 |
-
for i in range(len(slice_size)):
|
1023 |
-
size = slice_size[i]
|
1024 |
-
dim = sliceable_head_dims[i]
|
1025 |
-
if size is not None and size > dim:
|
1026 |
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
1027 |
-
|
1028 |
-
# Recursively walk through all the children.
|
1029 |
-
# Any children which exposes the set_attention_slice method
|
1030 |
-
# gets the message
|
1031 |
-
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
1032 |
-
if hasattr(module, "set_attention_slice"):
|
1033 |
-
module.set_attention_slice(slice_size.pop())
|
1034 |
-
|
1035 |
-
for child in module.children():
|
1036 |
-
fn_recursive_set_attention_slice(child, slice_size)
|
1037 |
-
|
1038 |
-
reversed_slice_size = list(reversed(slice_size))
|
1039 |
-
for module in self.children():
|
1040 |
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
1041 |
-
|
1042 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
1043 |
-
if hasattr(module, "gradient_checkpointing"):
|
1044 |
-
module.gradient_checkpointing = value
|
1045 |
-
|
1046 |
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
1047 |
-
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
1048 |
-
|
1049 |
-
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
1050 |
-
|
1051 |
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
1052 |
-
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
1053 |
-
|
1054 |
-
Args:
|
1055 |
-
s1 (`float`):
|
1056 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
1057 |
-
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
1058 |
-
s2 (`float`):
|
1059 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
1060 |
-
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
1061 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
1062 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
1063 |
-
"""
|
1064 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
1065 |
-
setattr(upsample_block, "s1", s1)
|
1066 |
-
setattr(upsample_block, "s2", s2)
|
1067 |
-
setattr(upsample_block, "b1", b1)
|
1068 |
-
setattr(upsample_block, "b2", b2)
|
1069 |
-
|
1070 |
-
def disable_freeu(self):
|
1071 |
-
"""Disables the FreeU mechanism."""
|
1072 |
-
freeu_keys = {"s1", "s2", "b1", "b2"}
|
1073 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
1074 |
-
for k in freeu_keys:
|
1075 |
-
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
1076 |
-
setattr(upsample_block, k, None)
|
1077 |
-
|
1078 |
-
def fuse_qkv_projections(self):
|
1079 |
-
"""
|
1080 |
-
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
1081 |
-
are fused. For cross-attention modules, key and value projection matrices are fused.
|
1082 |
-
|
1083 |
-
<Tip warning={true}>
|
1084 |
-
|
1085 |
-
This API is 🧪 experimental.
|
1086 |
-
|
1087 |
-
</Tip>
|
1088 |
-
"""
|
1089 |
-
self.original_attn_processors = None
|
1090 |
-
|
1091 |
-
for _, attn_processor in self.attn_processors.items():
|
1092 |
-
if "Added" in str(attn_processor.__class__.__name__):
|
1093 |
-
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
1094 |
-
|
1095 |
-
self.original_attn_processors = self.attn_processors
|
1096 |
-
|
1097 |
-
for module in self.modules():
|
1098 |
-
if isinstance(module, Attention):
|
1099 |
-
module.fuse_projections(fuse=True)
|
1100 |
-
|
1101 |
-
def unfuse_qkv_projections(self):
|
1102 |
-
"""Disables the fused QKV projection if enabled.
|
1103 |
-
|
1104 |
-
<Tip warning={true}>
|
1105 |
-
|
1106 |
-
This API is 🧪 experimental.
|
1107 |
-
|
1108 |
-
</Tip>
|
1109 |
-
|
1110 |
-
"""
|
1111 |
-
if self.original_attn_processors is not None:
|
1112 |
-
self.set_attn_processor(self.original_attn_processors)
|
1113 |
-
|
1114 |
-
def unload_lora(self):
|
1115 |
-
"""Unloads LoRA weights."""
|
1116 |
-
deprecate(
|
1117 |
-
"unload_lora",
|
1118 |
-
"0.28.0",
|
1119 |
-
"Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
|
1120 |
-
)
|
1121 |
-
for module in self.modules():
|
1122 |
-
if hasattr(module, "set_lora_layer"):
|
1123 |
-
module.set_lora_layer(None)
|
1124 |
-
|
1125 |
-
def get_time_embed(
|
1126 |
-
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
1127 |
-
) -> Optional[torch.Tensor]:
|
1128 |
-
timesteps = timestep
|
1129 |
-
if not torch.is_tensor(timesteps):
|
1130 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1131 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
1132 |
-
is_mps = sample.device.type == "mps"
|
1133 |
-
if isinstance(timestep, float):
|
1134 |
-
dtype = torch.float32 if is_mps else torch.float64
|
1135 |
-
else:
|
1136 |
-
dtype = torch.int32 if is_mps else torch.int64
|
1137 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1138 |
-
elif len(timesteps.shape) == 0:
|
1139 |
-
timesteps = timesteps[None].to(sample.device)
|
1140 |
-
|
1141 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1142 |
-
timesteps = timesteps.expand(sample.shape[0])
|
1143 |
-
|
1144 |
-
t_emb = self.time_proj(timesteps)
|
1145 |
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1146 |
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1147 |
-
# there might be better ways to encapsulate this.
|
1148 |
-
t_emb = t_emb.to(dtype=sample.dtype)
|
1149 |
-
return t_emb
|
1150 |
-
|
1151 |
-
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
1152 |
-
class_emb = None
|
1153 |
-
if self.class_embedding is not None:
|
1154 |
-
if class_labels is None:
|
1155 |
-
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1156 |
-
|
1157 |
-
if self.config.class_embed_type == "timestep":
|
1158 |
-
class_labels = self.time_proj(class_labels)
|
1159 |
-
|
1160 |
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1161 |
-
# there might be better ways to encapsulate this.
|
1162 |
-
class_labels = class_labels.to(dtype=sample.dtype)
|
1163 |
-
|
1164 |
-
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1165 |
-
return class_emb
|
1166 |
-
|
1167 |
-
def get_aug_embed(
|
1168 |
-
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1169 |
-
) -> Optional[torch.Tensor]:
|
1170 |
-
aug_emb = None
|
1171 |
-
if self.config.addition_embed_type == "text":
|
1172 |
-
aug_emb = self.add_embedding(encoder_hidden_states)
|
1173 |
-
elif self.config.addition_embed_type == "text_image":
|
1174 |
-
# Kandinsky 2.1 - style
|
1175 |
-
if "image_embeds" not in added_cond_kwargs:
|
1176 |
-
raise ValueError(
|
1177 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1178 |
-
)
|
1179 |
-
|
1180 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1181 |
-
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1182 |
-
aug_emb = self.add_embedding(text_embs, image_embs)
|
1183 |
-
elif self.config.addition_embed_type == "text_time":
|
1184 |
-
# SDXL - style
|
1185 |
-
if "text_embeds" not in added_cond_kwargs:
|
1186 |
-
raise ValueError(
|
1187 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1188 |
-
)
|
1189 |
-
text_embeds = added_cond_kwargs.get("text_embeds")
|
1190 |
-
if "time_ids" not in added_cond_kwargs:
|
1191 |
-
raise ValueError(
|
1192 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1193 |
-
)
|
1194 |
-
time_ids = added_cond_kwargs.get("time_ids")
|
1195 |
-
time_embeds = self.add_time_proj(time_ids.flatten())
|
1196 |
-
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1197 |
-
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1198 |
-
add_embeds = add_embeds.to(emb.dtype)
|
1199 |
-
aug_emb = self.add_embedding(add_embeds)
|
1200 |
-
elif self.config.addition_embed_type == "image":
|
1201 |
-
# Kandinsky 2.2 - style
|
1202 |
-
if "image_embeds" not in added_cond_kwargs:
|
1203 |
-
raise ValueError(
|
1204 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1205 |
-
)
|
1206 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1207 |
-
aug_emb = self.add_embedding(image_embs)
|
1208 |
-
elif self.config.addition_embed_type == "image_hint":
|
1209 |
-
# Kandinsky 2.2 - style
|
1210 |
-
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1211 |
-
raise ValueError(
|
1212 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1213 |
-
)
|
1214 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1215 |
-
hint = added_cond_kwargs.get("hint")
|
1216 |
-
aug_emb = self.add_embedding(image_embs, hint)
|
1217 |
-
return aug_emb
|
1218 |
-
|
1219 |
-
def process_encoder_hidden_states(
|
1220 |
-
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1221 |
-
) -> torch.Tensor:
|
1222 |
-
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1223 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1224 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1225 |
-
# Kandinsky 2.1 - style
|
1226 |
-
if "image_embeds" not in added_cond_kwargs:
|
1227 |
-
raise ValueError(
|
1228 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1229 |
-
)
|
1230 |
-
|
1231 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1232 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1233 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1234 |
-
# Kandinsky 2.2 - style
|
1235 |
-
if "image_embeds" not in added_cond_kwargs:
|
1236 |
-
raise ValueError(
|
1237 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1238 |
-
)
|
1239 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1240 |
-
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1241 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1242 |
-
if "image_embeds" not in added_cond_kwargs:
|
1243 |
-
raise ValueError(
|
1244 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1245 |
-
)
|
1246 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1247 |
-
image_embeds = self.encoder_hid_proj(image_embeds)
|
1248 |
-
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1249 |
-
return encoder_hidden_states
|
1250 |
-
|
1251 |
-
def init_kv_extraction(self):
|
1252 |
-
for block in self.down_blocks:
|
1253 |
-
if hasattr(block, "has_cross_attention") and block.has_cross_attention:
|
1254 |
-
block.init_kv_extraction()
|
1255 |
-
|
1256 |
-
for block in self.up_blocks:
|
1257 |
-
if hasattr(block, "has_cross_attention") and block.has_cross_attention:
|
1258 |
-
block.init_kv_extraction()
|
1259 |
-
|
1260 |
-
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1261 |
-
self.mid_block.init_kv_extraction()
|
1262 |
-
|
1263 |
-
def forward(
|
1264 |
-
self,
|
1265 |
-
sample: torch.FloatTensor,
|
1266 |
-
timestep: Union[torch.Tensor, float, int],
|
1267 |
-
encoder_hidden_states: torch.Tensor,
|
1268 |
-
controlnet_cond: torch.FloatTensor,
|
1269 |
-
conditioning_scale: float = 1.0,
|
1270 |
-
class_labels: Optional[torch.Tensor] = None,
|
1271 |
-
timestep_cond: Optional[torch.Tensor] = None,
|
1272 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1273 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1274 |
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1275 |
-
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1276 |
-
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1277 |
-
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1278 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1279 |
-
guess_mode: bool = False,
|
1280 |
-
return_dict: bool = True,
|
1281 |
-
) -> Union[ExtractKVUNet2DConditionOutput, Tuple]:
|
1282 |
-
r"""
|
1283 |
-
The [`ExtractKVUNet2DConditionModel`] forward method.
|
1284 |
-
|
1285 |
-
Args:
|
1286 |
-
sample (`torch.FloatTensor`):
|
1287 |
-
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1288 |
-
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1289 |
-
encoder_hidden_states (`torch.FloatTensor`):
|
1290 |
-
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1291 |
-
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1292 |
-
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1293 |
-
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1294 |
-
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1295 |
-
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1296 |
-
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1297 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1298 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1299 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
1300 |
-
cross_attention_kwargs (`dict`, *optional*):
|
1301 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1302 |
-
`self.processor` in
|
1303 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1304 |
-
added_cond_kwargs: (`dict`, *optional*):
|
1305 |
-
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1306 |
-
are passed along to the UNet blocks.
|
1307 |
-
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1308 |
-
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1309 |
-
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1310 |
-
A tensor that if specified is added to the residual of the middle unet block.
|
1311 |
-
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1312 |
-
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1313 |
-
encoder_attention_mask (`torch.Tensor`):
|
1314 |
-
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1315 |
-
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1316 |
-
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1317 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
1318 |
-
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1319 |
-
tuple.
|
1320 |
-
|
1321 |
-
Returns:
|
1322 |
-
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1323 |
-
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
|
1324 |
-
otherwise a `tuple` is returned where the first element is the sample tensor.
|
1325 |
-
"""
|
1326 |
-
# check channel order
|
1327 |
-
channel_order = self.config.controlnet_conditioning_channel_order
|
1328 |
-
|
1329 |
-
if channel_order == "rgb":
|
1330 |
-
# in rgb order by default
|
1331 |
-
...
|
1332 |
-
elif channel_order == "bgr":
|
1333 |
-
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
1334 |
-
else:
|
1335 |
-
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
1336 |
-
|
1337 |
-
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1338 |
-
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1339 |
-
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1340 |
-
# on the fly if necessary.
|
1341 |
-
default_overall_up_factor = 2**self.num_upsamplers
|
1342 |
-
|
1343 |
-
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1344 |
-
forward_upsample_size = False
|
1345 |
-
upsample_size = None
|
1346 |
-
|
1347 |
-
for dim in sample.shape[-2:]:
|
1348 |
-
if dim % default_overall_up_factor != 0:
|
1349 |
-
# Forward upsample size to force interpolation output size.
|
1350 |
-
forward_upsample_size = True
|
1351 |
-
break
|
1352 |
-
|
1353 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1354 |
-
# expects mask of shape:
|
1355 |
-
# [batch, key_tokens]
|
1356 |
-
# adds singleton query_tokens dimension:
|
1357 |
-
# [batch, 1, key_tokens]
|
1358 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1359 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1360 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1361 |
-
if attention_mask is not None:
|
1362 |
-
# assume that mask is expressed as:
|
1363 |
-
# (1 = keep, 0 = discard)
|
1364 |
-
# convert mask into a bias that can be added to attention scores:
|
1365 |
-
# (keep = +0, discard = -10000.0)
|
1366 |
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1367 |
-
attention_mask = attention_mask.unsqueeze(1)
|
1368 |
-
|
1369 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1370 |
-
if encoder_attention_mask is not None:
|
1371 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1372 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1373 |
-
|
1374 |
-
# 0. center input if necessary
|
1375 |
-
if self.config.center_input_sample:
|
1376 |
-
sample = 2 * sample - 1.0
|
1377 |
-
|
1378 |
-
# 1. time
|
1379 |
-
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1380 |
-
emb = self.time_embedding(t_emb, timestep_cond)
|
1381 |
-
aug_emb = None
|
1382 |
-
|
1383 |
-
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1384 |
-
if class_emb is not None:
|
1385 |
-
if self.config.class_embeddings_concat:
|
1386 |
-
emb = torch.cat([emb, class_emb], dim=-1)
|
1387 |
-
else:
|
1388 |
-
emb = emb + class_emb
|
1389 |
-
|
1390 |
-
aug_emb = self.get_aug_embed(
|
1391 |
-
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1392 |
-
)
|
1393 |
-
if self.config.addition_embed_type == "image_hint":
|
1394 |
-
aug_emb, hint = aug_emb
|
1395 |
-
sample = torch.cat([sample, hint], dim=1)
|
1396 |
-
|
1397 |
-
emb = emb + aug_emb if aug_emb is not None else emb
|
1398 |
-
|
1399 |
-
if self.time_embed_act is not None:
|
1400 |
-
emb = self.time_embed_act(emb)
|
1401 |
-
|
1402 |
-
encoder_hidden_states = self.process_encoder_hidden_states(
|
1403 |
-
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1404 |
-
)
|
1405 |
-
|
1406 |
-
# 2. pre-process
|
1407 |
-
sample = self.conv_in(sample)
|
1408 |
-
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
1409 |
-
sample = sample + controlnet_cond
|
1410 |
-
|
1411 |
-
# 2.5 GLIGEN position net
|
1412 |
-
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1413 |
-
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1414 |
-
gligen_args = cross_attention_kwargs.pop("gligen")
|
1415 |
-
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1416 |
-
|
1417 |
-
if cross_attention_kwargs is not None and cross_attention_kwargs.get("kv_drop_idx", None) is not None:
|
1418 |
-
threshold = cross_attention_kwargs.pop("kv_drop_idx")
|
1419 |
-
cross_attention_kwargs["kv_drop_idx"] = timestep<threshold
|
1420 |
-
|
1421 |
-
# 3. down
|
1422 |
-
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
1423 |
-
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
1424 |
-
if cross_attention_kwargs is not None:
|
1425 |
-
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1426 |
-
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
1427 |
-
else:
|
1428 |
-
lora_scale = 1.0
|
1429 |
-
|
1430 |
-
if USE_PEFT_BACKEND:
|
1431 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1432 |
-
scale_lora_layers(self, lora_scale)
|
1433 |
-
|
1434 |
-
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1435 |
-
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1436 |
-
is_adapter = down_intrablock_additional_residuals is not None
|
1437 |
-
# maintain backward compatibility for legacy usage, where
|
1438 |
-
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1439 |
-
# but can only use one or the other
|
1440 |
-
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1441 |
-
deprecate(
|
1442 |
-
"T2I should not use down_block_additional_residuals",
|
1443 |
-
"1.3.0",
|
1444 |
-
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1445 |
-
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1446 |
-
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1447 |
-
standard_warn=False,
|
1448 |
-
)
|
1449 |
-
down_intrablock_additional_residuals = down_block_additional_residuals
|
1450 |
-
is_adapter = True
|
1451 |
-
|
1452 |
-
down_block_res_samples = (sample,)
|
1453 |
-
extracted_kvs = {}
|
1454 |
-
for downsample_block in self.down_blocks:
|
1455 |
-
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1456 |
-
# For t2i-adapter CrossAttnDownBlock2D
|
1457 |
-
additional_residuals = {}
|
1458 |
-
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1459 |
-
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1460 |
-
|
1461 |
-
sample, res_samples, extracted_kv = downsample_block(
|
1462 |
-
hidden_states=sample,
|
1463 |
-
temb=emb,
|
1464 |
-
encoder_hidden_states=encoder_hidden_states,
|
1465 |
-
attention_mask=attention_mask,
|
1466 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1467 |
-
encoder_attention_mask=encoder_attention_mask,
|
1468 |
-
**additional_residuals,
|
1469 |
-
)
|
1470 |
-
extracted_kvs.update(extracted_kv)
|
1471 |
-
else:
|
1472 |
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1473 |
-
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1474 |
-
sample += down_intrablock_additional_residuals.pop(0)
|
1475 |
-
|
1476 |
-
down_block_res_samples += res_samples
|
1477 |
-
|
1478 |
-
if is_controlnet:
|
1479 |
-
new_down_block_res_samples = ()
|
1480 |
-
|
1481 |
-
for down_block_res_sample, down_block_additional_residual in zip(
|
1482 |
-
down_block_res_samples, down_block_additional_residuals
|
1483 |
-
):
|
1484 |
-
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1485 |
-
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1486 |
-
|
1487 |
-
down_block_res_samples = new_down_block_res_samples
|
1488 |
-
|
1489 |
-
# 4. mid
|
1490 |
-
if self.mid_block is not None:
|
1491 |
-
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1492 |
-
sample, extracted_kv = self.mid_block(
|
1493 |
-
sample,
|
1494 |
-
emb,
|
1495 |
-
encoder_hidden_states=encoder_hidden_states,
|
1496 |
-
attention_mask=attention_mask,
|
1497 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1498 |
-
encoder_attention_mask=encoder_attention_mask,
|
1499 |
-
)
|
1500 |
-
extracted_kvs.update(extracted_kv)
|
1501 |
-
else:
|
1502 |
-
sample = self.mid_block(sample, emb)
|
1503 |
-
|
1504 |
-
# To support T2I-Adapter-XL
|
1505 |
-
if (
|
1506 |
-
is_adapter
|
1507 |
-
and len(down_intrablock_additional_residuals) > 0
|
1508 |
-
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1509 |
-
):
|
1510 |
-
sample += down_intrablock_additional_residuals.pop(0)
|
1511 |
-
|
1512 |
-
if is_controlnet:
|
1513 |
-
sample = sample + mid_block_additional_residual
|
1514 |
-
|
1515 |
-
# 5. Control net blocks
|
1516 |
-
|
1517 |
-
controlnet_down_block_res_samples = ()
|
1518 |
-
|
1519 |
-
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
1520 |
-
down_block_res_sample = controlnet_block(down_block_res_sample)
|
1521 |
-
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
1522 |
-
|
1523 |
-
mid_block_res_sample = self.controlnet_mid_block(sample)
|
1524 |
-
|
1525 |
-
# 6. up
|
1526 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
1527 |
-
is_final_block = i == len(self.up_blocks) - 1
|
1528 |
-
|
1529 |
-
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1530 |
-
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1531 |
-
|
1532 |
-
# if we have not reached the final block and need to forward the
|
1533 |
-
# upsample size, we do it here
|
1534 |
-
if not is_final_block and forward_upsample_size:
|
1535 |
-
upsample_size = down_block_res_samples[-1].shape[2:]
|
1536 |
-
|
1537 |
-
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1538 |
-
sample, extract_kv = upsample_block(
|
1539 |
-
hidden_states=sample,
|
1540 |
-
temb=emb,
|
1541 |
-
res_hidden_states_tuple=res_samples,
|
1542 |
-
encoder_hidden_states=encoder_hidden_states,
|
1543 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1544 |
-
upsample_size=upsample_size,
|
1545 |
-
attention_mask=attention_mask,
|
1546 |
-
encoder_attention_mask=encoder_attention_mask,
|
1547 |
-
)
|
1548 |
-
extracted_kvs.update(extract_kv)
|
1549 |
-
else:
|
1550 |
-
sample = upsample_block(
|
1551 |
-
hidden_states=sample,
|
1552 |
-
temb=emb,
|
1553 |
-
res_hidden_states_tuple=res_samples,
|
1554 |
-
upsample_size=upsample_size,
|
1555 |
-
)
|
1556 |
-
|
1557 |
-
# 6. post-process
|
1558 |
-
if self.conv_norm_out:
|
1559 |
-
sample = self.conv_norm_out(sample)
|
1560 |
-
sample = self.conv_act(sample)
|
1561 |
-
sample = self.conv_out(sample)
|
1562 |
-
|
1563 |
-
# 7. scaling
|
1564 |
-
if guess_mode and not self.config.global_pool_conditions:
|
1565 |
-
scales = torch.logspace(-1, 0, len(controlnet_down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
1566 |
-
scales = scales * conditioning_scale
|
1567 |
-
controlnet_down_block_res_samples = [sample * scale for sample, scale in zip(controlnet_down_block_res_samples, scales)]
|
1568 |
-
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
1569 |
-
else:
|
1570 |
-
controlnet_down_block_res_samples = [sample * conditioning_scale for sample in controlnet_down_block_res_samples]
|
1571 |
-
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
1572 |
-
|
1573 |
-
if self.config.global_pool_conditions:
|
1574 |
-
controlnet_down_block_res_samples = [
|
1575 |
-
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in controlnet_down_block_res_samples
|
1576 |
-
]
|
1577 |
-
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
1578 |
-
|
1579 |
-
if USE_PEFT_BACKEND:
|
1580 |
-
# remove `lora_scale` from each PEFT layer
|
1581 |
-
unscale_lora_layers(self, lora_scale)
|
1582 |
-
|
1583 |
-
if not return_dict:
|
1584 |
-
return (sample, extracted_kvs, controlnet_down_block_res_samples, mid_block_res_sample)
|
1585 |
-
|
1586 |
-
return ExtractKVUNet2DConditionOutput(
|
1587 |
-
sample=sample, cached_kvs=extracted_kvs,
|
1588 |
-
down_block_res_samples=controlnet_down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
1589 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipelines/sdxl_instantir.py
CHANGED
@@ -1377,6 +1377,7 @@ class InstantIRPipeline(
|
|
1377 |
image = image * self.vae.config.scaling_factor
|
1378 |
if needs_upcasting:
|
1379 |
self.vae.to(dtype=torch.float16)
|
|
|
1380 |
else:
|
1381 |
height = int(height * self.vae_scale_factor)
|
1382 |
width = int(width * self.vae_scale_factor)
|
|
|
1377 |
image = image * self.vae.config.scaling_factor
|
1378 |
if needs_upcasting:
|
1379 |
self.vae.to(dtype=torch.float16)
|
1380 |
+
image = image.to(dtype=torch.float16)
|
1381 |
else:
|
1382 |
height = int(height * self.vae_scale_factor)
|
1383 |
width = int(width * self.vae_scale_factor)
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
diffusers
|
2 |
pillow
|
|
|
3 |
accelerate==0.25.0
|
4 |
datasets==2.19.1
|
5 |
einops==0.8.0
|
|
|
1 |
+
diffusers==0.28.1
|
2 |
pillow
|
3 |
+
spaces
|
4 |
accelerate==0.25.0
|
5 |
datasets==2.19.1
|
6 |
einops==0.8.0
|