Update app.py
Browse files
app.py
CHANGED
@@ -49,26 +49,26 @@ def main():
|
|
49 |
"Natural Environment": (nature_df, 'x'),
|
50 |
"Population Density": (population_df, '^')
|
51 |
}
|
52 |
-
|
53 |
-
combined_data = pd.concat([dataset_mapping[dataset_name][0] for dataset_name in datasets])
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
for dataset_name in datasets:
|
60 |
-
data, marker = dataset_mapping[dataset_name]
|
61 |
-
subset_labels = labels[:len(data)]
|
62 |
-
ax.scatter(data['x'], data['y'], c=subset_labels, cmap='viridis', marker=marker, label=dataset_name)
|
63 |
-
labels = labels[len(data):]
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
main()
|
|
|
49 |
"Natural Environment": (nature_df, 'x'),
|
50 |
"Population Density": (population_df, '^')
|
51 |
}
|
|
|
|
|
52 |
|
53 |
+
# Check if any dataset is selected
|
54 |
+
if datasets:
|
55 |
+
combined_data = pd.concat([dataset_mapping[dataset_name][0] for dataset_name in datasets])
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
centroids, labels = apply_kmeans(combined_data.values, k_value)
|
58 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
59 |
+
|
60 |
+
for dataset_name in datasets:
|
61 |
+
data, marker = dataset_mapping[dataset_name]
|
62 |
+
subset_labels = labels[:len(data)]
|
63 |
+
ax.scatter(data['x'], data['y'], c=subset_labels, cmap='viridis', marker=marker, label=dataset_name)
|
64 |
+
labels = labels[len(data):]
|
65 |
+
|
66 |
+
ax.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
|
67 |
+
ax.set_xlim(0, 100)
|
68 |
+
ax.set_ylim(0, 100)
|
69 |
+
ax.set_title(f"K-means clustering result (k={k_value})")
|
70 |
+
ax.legend()
|
71 |
+
st.pyplot(fig)
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
main()
|