Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Literal
|
3 |
+
import streamlit as st
|
4 |
+
from langchain import OpenAI
|
5 |
+
from langchain.callbacks import get_openai_callback
|
6 |
+
from langchain.chains import ConversationChain
|
7 |
+
from langchain.chains.conversation.memory import ConversationSummaryMemory
|
8 |
+
import streamlit.components.v1 as components
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class Message:
|
12 |
+
"""Class for keeping track of a chat message."""
|
13 |
+
origin: Literal["human", "ai"]
|
14 |
+
message: str
|
15 |
+
|
16 |
+
def load_css():
|
17 |
+
with open("static/styles.css", "r") as f:
|
18 |
+
css = f"<style>{f.read()}</style>"
|
19 |
+
st.markdown(css, unsafe_allow_html=True)
|
20 |
+
|
21 |
+
def initialize_session_state():
|
22 |
+
if "history" not in st.session_state:
|
23 |
+
st.session_state.history = []
|
24 |
+
if "token_count" not in st.session_state:
|
25 |
+
st.session_state.token_count = 0
|
26 |
+
if 'chain' not in st.session_state:
|
27 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo-0613", temperature=0)
|
28 |
+
loader = PyPDFLoader("/home/user/app/docs.pdf")
|
29 |
+
documents = loader.load()
|
30 |
+
|
31 |
+
text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=0)
|
32 |
+
texts = text_splitter.split_documents(documents)
|
33 |
+
|
34 |
+
embeddings = OpenAIEmbeddings()
|
35 |
+
vector_store = Chroma.from_documents(texts, embeddings)
|
36 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
37 |
+
|
38 |
+
from langchain.prompts.chat import (
|
39 |
+
ChatPromptTemplate,
|
40 |
+
SystemMessagePromptTemplate,
|
41 |
+
HumanMessagePromptTemplate,
|
42 |
+
)
|
43 |
+
|
44 |
+
system_template="""You act like a successful pharmacist. Talk to students about the career path of a pharmacist.
|
45 |
+
Never reveal that it is an AI. Use the following pieces of context to answer the users question shortly.
|
46 |
+
Given the following summaries of a long document and a question, create a final answer with references.
|
47 |
+
If you don't know the answer, just say that "I don't know", don't try to make up an answer.
|
48 |
+
----------------
|
49 |
+
{summaries}
|
50 |
+
You MUST answer in Korean and in Markdown format"""
|
51 |
+
|
52 |
+
messages = [
|
53 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
54 |
+
HumanMessagePromptTemplate.from_template("{question}")
|
55 |
+
]
|
56 |
+
|
57 |
+
prompt = ChatPromptTemplate.from_messages(messages)
|
58 |
+
|
59 |
+
chain_type_kwargs = {"prompt": prompt}
|
60 |
+
|
61 |
+
st.session_state['chain'] = RetrievalQAWithSourcesChain.from_chain_type(
|
62 |
+
llm=llm,
|
63 |
+
chain_type="stuff",
|
64 |
+
retriever=retriever,
|
65 |
+
return_source_documents=True,
|
66 |
+
chain_type_kwargs=chain_type_kwargs,
|
67 |
+
reduce_k_below_max_tokens=True,
|
68 |
+
verbose=True,
|
69 |
+
)
|
70 |
+
|
71 |
+
def generate_response(user_input):
|
72 |
+
result = st.session_state['chain'](user_input)
|
73 |
+
|
74 |
+
bot_message = result['answer']
|
75 |
+
|
76 |
+
for i, doc in enumerate(result['source_documents']):
|
77 |
+
bot_message += '[' + str(i+1) + '] ' + doc.metadata['source'] + '(' + str(doc.metadata['page']) + ') '
|
78 |
+
|
79 |
+
return bot_message
|
80 |
+
|
81 |
+
def on_click_callback():
|
82 |
+
with get_openai_callback() as cb:
|
83 |
+
human_prompt = st.session_state.human_prompt
|
84 |
+
llm_response = generate_response(human_prompt)
|
85 |
+
st.session_state.history.append(
|
86 |
+
Message("human", human_prompt)
|
87 |
+
)
|
88 |
+
st.session_state.history.append(
|
89 |
+
Message("ai", llm_response)
|
90 |
+
)
|
91 |
+
st.session_state.token_count += cb.total_tokens
|
92 |
+
|
93 |
+
load_css()
|
94 |
+
initialize_session_state()
|
95 |
+
|
96 |
+
st.title("Hello Custom CSS Chatbot 🤖")
|
97 |
+
|
98 |
+
chat_placeholder = st.container()
|
99 |
+
prompt_placeholder = st.form("chat-form")
|
100 |
+
credit_card_placeholder = st.empty()
|
101 |
+
|
102 |
+
with chat_placeholder:
|
103 |
+
for chat in st.session_state.history:
|
104 |
+
div = f"""
|
105 |
+
<div class="chat-row
|
106 |
+
{'' if chat.origin == 'ai' else 'row-reverse'}">
|
107 |
+
<img class="chat-icon" src="app/static/{
|
108 |
+
'ai_icon.png' if chat.origin == 'ai'
|
109 |
+
else 'user_icon.png'}"
|
110 |
+
width=32 height=32>
|
111 |
+
<div class="chat-bubble
|
112 |
+
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
|
113 |
+
​{chat.message}
|
114 |
+
</div>
|
115 |
+
</div>
|
116 |
+
"""
|
117 |
+
st.markdown(div, unsafe_allow_html=True)
|
118 |
+
|
119 |
+
for _ in range(3):
|
120 |
+
st.markdown("")
|
121 |
+
|
122 |
+
with prompt_placeholder:
|
123 |
+
st.markdown("**Chat**")
|
124 |
+
cols = st.columns((6, 1))
|
125 |
+
cols[0].text_input(
|
126 |
+
"Chat",
|
127 |
+
value="Hello bot",
|
128 |
+
label_visibility="collapsed",
|
129 |
+
key="human_prompt",
|
130 |
+
)
|
131 |
+
cols[1].form_submit_button(
|
132 |
+
"Submit",
|
133 |
+
type="primary",
|
134 |
+
on_click=on_click_callback,
|
135 |
+
)
|
136 |
+
|
137 |
+
credit_card_placeholder.caption(f"""
|
138 |
+
Used {st.session_state.token_count} tokens \n
|
139 |
+
Debug Langchain conversation:
|
140 |
+
{st.session_state.conversation.memory.buffer}
|
141 |
+
""")
|
142 |
+
|
143 |
+
components.html("""
|
144 |
+
<script>
|
145 |
+
const streamlitDoc = window.parent.document;
|
146 |
+
|
147 |
+
const buttons = Array.from(
|
148 |
+
streamlitDoc.querySelectorAll('.stButton > button')
|
149 |
+
);
|
150 |
+
const submitButton = buttons.find(
|
151 |
+
el => el.innerText === 'Submit'
|
152 |
+
);
|
153 |
+
|
154 |
+
streamlitDoc.addEventListener('keydown', function(e) {
|
155 |
+
switch (e.key) {
|
156 |
+
case 'Enter':
|
157 |
+
submitButton.click();
|
158 |
+
break;
|
159 |
+
}
|
160 |
+
});
|
161 |
+
</script>
|
162 |
+
""",
|
163 |
+
height=0,
|
164 |
+
width=0,
|
165 |
+
)
|