Initial commit2
Browse files- app.py +30 -35
- app.py.bak +35 -30
app.py
CHANGED
@@ -1,50 +1,45 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
model =
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
return generated_text
|
32 |
-
|
33 |
-
# ?? Types d'OCR (juste pour l'interface ici)
|
34 |
ocr_types = ["ocr", "format"]
|
35 |
|
36 |
-
#
|
37 |
iface = gr.Interface(
|
38 |
fn=ocr_from_image,
|
39 |
inputs=[
|
40 |
-
gr.File(label="
|
41 |
-
gr.Radio(ocr_types, label="Type
|
42 |
],
|
43 |
outputs="text",
|
44 |
-
title="
|
45 |
-
description="
|
46 |
)
|
47 |
|
48 |
-
# ?? Lancement
|
49 |
if __name__ == "__main__":
|
50 |
iface.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
6 |
+
# Load model and tokenizer
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
8 |
+
model = AutoModel.from_pretrained(
|
9 |
+
'ucaslcl/GOT-OCR2_0',
|
10 |
+
trust_remote_code=True,
|
11 |
+
low_cpu_mem_usage=True,
|
12 |
+
device_map='cuda' if torch.cuda.is_available() else 'cpu',
|
13 |
+
use_safetensors=True,
|
14 |
+
pad_token_id=tokenizer.eos_token_id
|
15 |
+
)
|
16 |
+
model = model.eval()
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
model = model.cuda()
|
19 |
+
|
20 |
+
# OCR function
|
21 |
+
def ocr_from_image(image, ocr_type):
|
22 |
+
if image is None:
|
23 |
+
return "Please upload an image."
|
24 |
+
image_path = "uploaded_image.jpg"
|
25 |
+
image.save(image_path)
|
26 |
+
res = model.chat(tokenizer, image_path, ocr_type=ocr_type)
|
27 |
+
return res
|
28 |
+
|
29 |
+
# OCR types to choose from
|
|
|
|
|
|
|
30 |
ocr_types = ["ocr", "format"]
|
31 |
|
32 |
+
# Gradio interface
|
33 |
iface = gr.Interface(
|
34 |
fn=ocr_from_image,
|
35 |
inputs=[
|
36 |
+
gr.File(label="Upload Image", file_types=[".jpg", ".jpeg", ".png"]),
|
37 |
+
gr.Radio(ocr_types, label="OCR Type", value="ocr")
|
38 |
],
|
39 |
outputs="text",
|
40 |
+
title="🧠 GOT-OCR2.0 Transformer OCR",
|
41 |
+
description="Upload an image file and select the OCR type: plain text (`ocr`) or formatted (`format`)."
|
42 |
)
|
43 |
|
|
|
44 |
if __name__ == "__main__":
|
45 |
iface.launch()
|
app.py.bak
CHANGED
@@ -1,45 +1,50 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
model =
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
if
|
18 |
-
|
19 |
-
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
ocr_types = ["ocr", "format"]
|
31 |
|
32 |
-
# Gradio
|
33 |
iface = gr.Interface(
|
34 |
fn=ocr_from_image,
|
35 |
inputs=[
|
36 |
-
gr.File(label="
|
37 |
-
gr.Radio(ocr_types, label="OCR
|
38 |
],
|
39 |
outputs="text",
|
40 |
-
title="
|
41 |
-
description="
|
42 |
)
|
43 |
|
|
|
44 |
if __name__ == "__main__":
|
45 |
iface.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from transformers import TrOCRProcessor, TrOCRForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
|
7 |
+
# ?? Chargement du modele et du processor
|
8 |
+
model_name = "microsoft/trocr-base-handwritten"
|
9 |
+
model = TrOCRForConditionalGeneration.from_pretrained(model_name)
|
10 |
+
processor = TrOCRProcessor.from_pretrained(model_name)
|
11 |
+
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.to(device)
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
# ?? Fonction OCR
|
17 |
+
def ocr_from_image(image_file, ocr_type):
|
18 |
+
if image_file is None:
|
19 |
+
return "Veuillez importer une image."
|
20 |
+
|
21 |
+
# Pretraitement de l'image
|
22 |
+
image = Image.open(image_file.name).convert("RGB")
|
23 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(device)
|
24 |
+
|
25 |
+
# Generation de texte
|
26 |
+
with torch.no_grad():
|
27 |
+
generated_ids = model.generate(pixel_values)
|
28 |
+
|
29 |
+
# Decodage du texte genere
|
30 |
+
generated_text = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
31 |
+
return generated_text
|
32 |
+
|
33 |
+
# ?? Types d'OCR (juste pour l'interface ici)
|
34 |
ocr_types = ["ocr", "format"]
|
35 |
|
36 |
+
# ?? Interface Gradio
|
37 |
iface = gr.Interface(
|
38 |
fn=ocr_from_image,
|
39 |
inputs=[
|
40 |
+
gr.File(label="Importer une image", file_types=[".jpg", ".jpeg", ".png"]),
|
41 |
+
gr.Radio(ocr_types, label="Type d'OCR", value="ocr")
|
42 |
],
|
43 |
outputs="text",
|
44 |
+
title="?? OCR manuscrit avec TrOCR",
|
45 |
+
description="Importez une image manuscrite pour extraire le texte avec le modele Microsoft TrOCR."
|
46 |
)
|
47 |
|
48 |
+
# ?? Lancement
|
49 |
if __name__ == "__main__":
|
50 |
iface.launch()
|