File size: 7,557 Bytes
f89bd21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# Context Structure Fix Implementation
## Summary
Fixed context structure mismatches across all agents to properly use the Context Manager's actual data structure. All agents now correctly access `interaction_contexts`, `user_context`, and `combined_context` instead of non-existent keys like `conversation_history` or `interactions`.
## Changes Made
### 1. Intent Recognition Agent (`src/agents/intent_agent.py`)
**Problem**: Was accessing `context.get('conversation_history', [])` which doesn't exist.
**Fix**:
- Now uses `combined_context` (preferred) or builds from `interaction_contexts` and `user_context`
- Shows last 2 interaction summaries for context awareness
- Includes user context if available
- Provides informative message when no context is available
**Key Changes**:
```python
# OLD (line 109):
Available Context: {context.get('conversation_history', [])[-2:] if context else []}
# NEW:
# Uses combined_context if available, otherwise builds from interaction_contexts
combined_context = context.get('combined_context', '')
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')
```
**Impact**: Intent agent now sees actual conversation history, improving intent recognition accuracy for follow-up questions.
---
### 2. Response Synthesis Agent (`src/agents/synthesis_agent.py`)
**Problem**: Was accessing `context.get('interactions', [])` which doesn't exist.
**Fix**:
- `_build_context_section()` now uses `combined_context` (preferred) or builds from `interaction_contexts`
- Updated `_summarize_interaction_contexts()` to work with Context Manager structure
- Added backward compatibility via `_summarize_interactions()` wrapper
- Updated logging and metadata to use correct keys
**Key Changes**:
```python
# OLD (line 534):
interactions = context.get('interactions', [])
# NEW:
combined_context = context.get('combined_context', '')
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')
```
**Impact**: Synthesis agent now uses actual conversation context for generating contextually relevant responses.
---
### 3. Safety Check Agent (`src/agents/safety_agent.py`)
**Problem**: Wasn't using context at all in safety analysis.
**Fix**:
- Enhanced `_build_safety_prompt()` to include context information
- Uses `user_context` and recent `interaction_contexts` for context-aware safety analysis
- Helps safety agent understand conversational context when assessing content appropriateness
**Key Changes**:
```python
# Added context awareness:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
# Includes context in safety analysis prompt
```
**Impact**: Safety analysis now considers conversation context, improving appropriateness assessment.
---
### 4. Skills Identification Agent (`src/agents/skills_identification_agent.py`)
**Problem**: Wasn't using context in skill identification.
**Fix**:
- Enhanced `_build_market_analysis_prompt()` to accept and use context parameter
- Includes user context and recent interaction contexts in market analysis
- Helps identify skills based on conversation continuity
**Key Changes**:
```python
# Updated method signature:
def _build_market_analysis_prompt(self, user_input: str, context: Dict[str, Any] = None)
# Added context information:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
```
**Impact**: Skills identification now considers conversation history for better skill relevance.
---
## Context Structure Reference
All agents now correctly use the Context Manager's structure:
```python
context = {
"session_id": str,
"user_id": str,
"user_context": str, # 500-token user persona summary
"interaction_contexts": [ # List of interaction summary dicts
{
"summary": str, # 50-token interaction summary
"timestamp": str
},
...
],
"combined_context": str, # Pre-formatted: "[User Context]\n...\n[Interaction Context #N]\n..."
"preferences": dict,
"active_tasks": list,
"last_activity": str
}
```
## Implementation Strategy
### Priority Order
1. **Use `combined_context` first** - Pre-formatted by Context Manager, most efficient
2. **Fallback to building from components** - If `combined_context` not available
3. **Handle empty context gracefully** - Informative messages when no context exists
### Context Access Pattern
```python
# Preferred pattern used across all agents:
if context:
# Option 1: Use pre-formatted combined_context
combined_context = context.get('combined_context', '')
if combined_context:
# Use combined_context directly
context_info = combined_context
# Option 2: Build from components
else:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
# Build context_info from components
```
## Testing Recommendations
### Test Scenarios
1. **First Turn (No Context)**
- Verify agents handle empty context gracefully
- Verify informative messages when no context available
2. **Second Turn (1 Interaction)**
- Verify agents access `interaction_contexts[0]`
- Verify context appears in prompts
3. **Multiple Turns (3+ Interactions)**
- Verify agents use last N interaction contexts
- Verify context accumulates correctly
4. **With User Persona (20+ Interactions)**
- Verify `user_context` appears in prompts
- Verify `combined_context` includes user context
### Expected Behavior
| Turn | Intent Agent Sees | Synthesis Agent Sees | Safety Agent Sees | Skills Agent Sees |
|------|------------------|---------------------|-------------------|-------------------|
| 1 | "No previous context" | Empty | No context | No context |
| 2 | Interaction #1 summary | Interaction #1 | Recent context | Recent context |
| 3+ | Last 2 interactions | All/Summarized interactions | Recent context | Recent context |
| 20+ | User context + interactions | User context + interactions | User context | User context |
## Benefits
1. **Intent Recognition**: Now context-aware, better accuracy for follow-up questions
2. **Response Synthesis**: Uses conversation history for more relevant responses
3. **Safety Analysis**: Context-aware appropriateness assessment
4. **Skills Identification**: Considers conversation continuity for better skill matching
5. **Consistency**: All agents use the same context structure
6. **Performance**: Uses pre-formatted `combined_context` when available (more efficient)
## Backward Compatibility
- Synthesis agent includes `_summarize_interactions()` wrapper for backward compatibility
- All changes are additive (enhancements) rather than breaking changes
- Fallback logic handles missing or incomplete context gracefully
## Files Modified
1. `src/agents/intent_agent.py` - Fixed context access in `_build_chain_of_thought_prompt()`
2. `src/agents/synthesis_agent.py` - Fixed `_build_context_section()` and related methods
3. `src/agents/safety_agent.py` - Enhanced `_build_safety_prompt()` with context
4. `src/agents/skills_identification_agent.py` - Enhanced `_build_market_analysis_prompt()` with context
## Verification
✅ No linting errors
✅ All agents use correct context keys
✅ Backward compatibility maintained
✅ Graceful handling of empty context
✅ Consistent implementation pattern across all agents
|