File size: 7,557 Bytes
f89bd21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Context Structure Fix Implementation

## Summary

Fixed context structure mismatches across all agents to properly use the Context Manager's actual data structure. All agents now correctly access `interaction_contexts`, `user_context`, and `combined_context` instead of non-existent keys like `conversation_history` or `interactions`.

## Changes Made

### 1. Intent Recognition Agent (`src/agents/intent_agent.py`)

**Problem**: Was accessing `context.get('conversation_history', [])` which doesn't exist.

**Fix**: 
- Now uses `combined_context` (preferred) or builds from `interaction_contexts` and `user_context`
- Shows last 2 interaction summaries for context awareness
- Includes user context if available
- Provides informative message when no context is available

**Key Changes**:
```python
# OLD (line 109):
Available Context: {context.get('conversation_history', [])[-2:] if context else []}

# NEW:
# Uses combined_context if available, otherwise builds from interaction_contexts
combined_context = context.get('combined_context', '')
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')
```

**Impact**: Intent agent now sees actual conversation history, improving intent recognition accuracy for follow-up questions.

---

### 2. Response Synthesis Agent (`src/agents/synthesis_agent.py`)

**Problem**: Was accessing `context.get('interactions', [])` which doesn't exist.

**Fix**:
- `_build_context_section()` now uses `combined_context` (preferred) or builds from `interaction_contexts`
- Updated `_summarize_interaction_contexts()` to work with Context Manager structure
- Added backward compatibility via `_summarize_interactions()` wrapper
- Updated logging and metadata to use correct keys

**Key Changes**:
```python
# OLD (line 534):
interactions = context.get('interactions', [])

# NEW:
combined_context = context.get('combined_context', '')
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')
```

**Impact**: Synthesis agent now uses actual conversation context for generating contextually relevant responses.

---

### 3. Safety Check Agent (`src/agents/safety_agent.py`)

**Problem**: Wasn't using context at all in safety analysis.

**Fix**:
- Enhanced `_build_safety_prompt()` to include context information
- Uses `user_context` and recent `interaction_contexts` for context-aware safety analysis
- Helps safety agent understand conversational context when assessing content appropriateness

**Key Changes**:
```python
# Added context awareness:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
# Includes context in safety analysis prompt
```

**Impact**: Safety analysis now considers conversation context, improving appropriateness assessment.

---

### 4. Skills Identification Agent (`src/agents/skills_identification_agent.py`)

**Problem**: Wasn't using context in skill identification.

**Fix**:
- Enhanced `_build_market_analysis_prompt()` to accept and use context parameter
- Includes user context and recent interaction contexts in market analysis
- Helps identify skills based on conversation continuity

**Key Changes**:
```python
# Updated method signature:
def _build_market_analysis_prompt(self, user_input: str, context: Dict[str, Any] = None)

# Added context information:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
```

**Impact**: Skills identification now considers conversation history for better skill relevance.

---

## Context Structure Reference

All agents now correctly use the Context Manager's structure:

```python
context = {
    "session_id": str,
    "user_id": str,
    "user_context": str,  # 500-token user persona summary
    "interaction_contexts": [  # List of interaction summary dicts
        {
            "summary": str,  # 50-token interaction summary
            "timestamp": str
        },
        ...
    ],
    "combined_context": str,  # Pre-formatted: "[User Context]\n...\n[Interaction Context #N]\n..."
    "preferences": dict,
    "active_tasks": list,
    "last_activity": str
}
```

## Implementation Strategy

### Priority Order
1. **Use `combined_context` first** - Pre-formatted by Context Manager, most efficient
2. **Fallback to building from components** - If `combined_context` not available
3. **Handle empty context gracefully** - Informative messages when no context exists

### Context Access Pattern
```python
# Preferred pattern used across all agents:
if context:
    # Option 1: Use pre-formatted combined_context
    combined_context = context.get('combined_context', '')
    if combined_context:
        # Use combined_context directly
        context_info = combined_context
    
    # Option 2: Build from components
    else:
        user_context = context.get('user_context', '')
        interaction_contexts = context.get('interaction_contexts', [])
        # Build context_info from components
```

## Testing Recommendations

### Test Scenarios

1. **First Turn (No Context)**
   - Verify agents handle empty context gracefully
   - Verify informative messages when no context available

2. **Second Turn (1 Interaction)**
   - Verify agents access `interaction_contexts[0]`
   - Verify context appears in prompts

3. **Multiple Turns (3+ Interactions)**
   - Verify agents use last N interaction contexts
   - Verify context accumulates correctly

4. **With User Persona (20+ Interactions)**
   - Verify `user_context` appears in prompts
   - Verify `combined_context` includes user context

### Expected Behavior

| Turn | Intent Agent Sees | Synthesis Agent Sees | Safety Agent Sees | Skills Agent Sees |
|------|------------------|---------------------|-------------------|-------------------|
| 1    | "No previous context" | Empty | No context | No context |
| 2    | Interaction #1 summary | Interaction #1 | Recent context | Recent context |
| 3+   | Last 2 interactions | All/Summarized interactions | Recent context | Recent context |
| 20+  | User context + interactions | User context + interactions | User context | User context |

## Benefits

1. **Intent Recognition**: Now context-aware, better accuracy for follow-up questions
2. **Response Synthesis**: Uses conversation history for more relevant responses
3. **Safety Analysis**: Context-aware appropriateness assessment
4. **Skills Identification**: Considers conversation continuity for better skill matching
5. **Consistency**: All agents use the same context structure
6. **Performance**: Uses pre-formatted `combined_context` when available (more efficient)

## Backward Compatibility

- Synthesis agent includes `_summarize_interactions()` wrapper for backward compatibility
- All changes are additive (enhancements) rather than breaking changes
- Fallback logic handles missing or incomplete context gracefully

## Files Modified

1. `src/agents/intent_agent.py` - Fixed context access in `_build_chain_of_thought_prompt()`
2. `src/agents/synthesis_agent.py` - Fixed `_build_context_section()` and related methods
3. `src/agents/safety_agent.py` - Enhanced `_build_safety_prompt()` with context
4. `src/agents/skills_identification_agent.py` - Enhanced `_build_market_analysis_prompt()` with context

## Verification

✅ No linting errors  
✅ All agents use correct context keys  
✅ Backward compatibility maintained  
✅ Graceful handling of empty context  
✅ Consistent implementation pattern across all agents