Jfink09 commited on
Commit
a0a2a37
1 Parent(s): 18e1e5b

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +84 -0
  2. model.py +36 -0
  3. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_resnet50_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ class_names = ['CRVO',
12
+ 'Diabetic Retinopathy',
13
+ 'Laser Spots',
14
+ 'Macular Degeneration',
15
+ 'Myelinated Nerve Fiber',
16
+ 'Normal',
17
+ 'Pathological Mypoia',
18
+ 'Retinitis Pigmentosa']
19
+
20
+ ### 2. Model and transforms preparation ###
21
+
22
+ # Create ResNet50 model
23
+ resnet50, resnet50_transforms = create_resnet50_model(
24
+ num_classes=len(class_names), # actual value would also work
25
+ )
26
+
27
+ # Load saved weights
28
+ resnet50.load_state_dict(
29
+ torch.load(
30
+ f="pretrained_resnet50_feature_extractor_drappcompressed.pth",
31
+ map_location=torch.device("cpu"), # load to CPU
32
+ )
33
+ )
34
+
35
+ ### 3. Predict function ###
36
+
37
+ # Create predict function
38
+ def predict(img) -> Tuple[Dict, float]:
39
+ """Transforms and performs a prediction on img and returns prediction and time taken.
40
+ """
41
+ # Start the timer
42
+ start_time = timer()
43
+
44
+ # Transform the target image and add a batch dimension
45
+ img = resnet50_transforms(img).unsqueeze(0)
46
+
47
+ # Put model into evaluation mode and turn on inference mode
48
+ resnet50.eval()
49
+ with torch.inference_mode():
50
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
51
+ pred_probs = torch.softmax(resnet50(img), dim=1)
52
+
53
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
54
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
55
+
56
+ # Calculate the prediction time
57
+ pred_time = round(timer() - start_time, 5)
58
+
59
+ # Return the prediction dictionary and prediction time
60
+ return pred_labels_and_probs, pred_time
61
+
62
+ ### 4. Gradio app ###
63
+
64
+ # Create title, description and article strings
65
+ title = "DeepFundus 👀"
66
+ description = "A ResNet50 feature extractor computer vision model to classify funduscopic images."
67
+ #article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
68
+
69
+ # Create examples list from "examples/" directory
70
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
71
+
72
+ # Create the Gradio demo
73
+ demo = gr.Interface(fn=predict, # mapping function from input to output
74
+ inputs=gr.Image(type="pil"), # what are the inputs?
75
+ outputs=[gr.Label(num_top_classes=len(num_classes), label="Predictions"), # what are the outputs?
76
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
77
+ # Create examples list from "examples/" directory
78
+ examples=example_list,
79
+ title=title,
80
+ description=description,
81
+ article=article)
82
+
83
+ # Launch the demo!
84
+ demo.launch()
model.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+ def create_resnet50_model(num_classes:int=8, # 4
7
+ seed:int=42):
8
+ """Creates an ResNet50 feature extractor model and transforms.
9
+
10
+ Args:
11
+ num_classes (int, optional): number of classes in the classifier head.
12
+ Defaults to 3.
13
+ seed (int, optional): random seed value. Defaults to 42.
14
+
15
+ Returns:
16
+ model (torch.nn.Module): ResNet50 feature extractor model.
17
+ transforms (torchvision.transforms): ResNet50 image transforms.
18
+ """
19
+ # 1, 2, 3. Create ResNet50 pretrained weights, transforms and model
20
+ weights = torchvision.models.ResNet50_Weights.DEFAULT
21
+ transforms = weights.transforms()
22
+ model = torchvision.models.resnet50(weights=weights)
23
+
24
+ # 4. Freeze all layers in base model
25
+ for param in model.parameters():
26
+ param.requires_grad = True # Set to False for model's other than ResNet
27
+
28
+ # 5. Change classifier head with random seed for reproducibility
29
+ torch.manual_seed(seed)
30
+ model.classifier = nn.Sequential(
31
+ nn.Dropout(p=0.3, inplace=True),
32
+ nn.Linear(in_features=2048
33
+ , out_features=num_classes), # If using EffnetB2 in_features = 1408, EffnetB0 in_features = 1280, if ResNet50 in_features = 2048
34
+ )
35
+
36
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==3.1.4