Jhakx commited on
Commit
3c70689
verified
1 Parent(s): ead6a90

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +497 -21
README.md CHANGED
@@ -1,21 +1,497 @@
1
- ---
2
- title: Gemmatraining
3
- emoji: 馃殌
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: docker
7
- pinned: false
8
- hf_oauth: true
9
- hf_oauth_expiration_minutes: 36000
10
- hf_oauth_scopes:
11
- - read-repos
12
- - write-repos
13
- - manage-repos
14
- - inference-api
15
- - read-billing
16
- tags:
17
- - autotrain
18
- license: gemma
19
- ---
20
-
21
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Save this information
2
+ I've updated the Flask website HTML to have a sleek and modern design with opaque colors, rounded edges, and modern aspects. Here's the updated code:
3
+ ```html
4
+ <!DOCTYPE html>
5
+ <html lang="en">
6
+ <head>
7
+ <meta charset="UTF-8">
8
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
9
+ <title>Multi-Model Chatbot</title>
10
+ <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Open+Sans:300,400,600,700&display=swap">
11
+ <link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
12
+ </head>
13
+ <body>
14
+ <header>
15
+ <nav class="nav">
16
+ <ul>
17
+ <li><a href="#chatbot">Chatbot</a></li>
18
+ <li><a href="#image-generator">Image Generator</a></li>
19
+ <li><a href="#tts-engine">TTS Engine</a></li>
20
+ <li><a href="#code-generator">Code Generator</a></li>
21
+ </ul>
22
+ </nav>
23
+ </header>
24
+ <main>
25
+ <section id="chatbot">
26
+ <h1>Multi-Model Chatbot</h1>
27
+ <div class="chatbot-container">
28
+ <form action="/chatbot" method="post">
29
+ <input type="text" name="input_text" placeholder="Enter your question or topic...">
30
+ <select name="model_name">
31
+ <option value="sentiment-analysis">Sentiment Analysis</option>
32
+ <option value="language-translation">Language Translation</option>
33
+ <option value="question-answering">Question Answering</option>
34
+ <option value="gemini-1.5-pro">Gemini 1.5 Pro</option>
35
+ </select>
36
+ <button type="submit">Ask</button>
37
+ </form>
38
+ <div class="chatbot-response">
39
+ <p id="chatbot-response-text">{{ response }}</p>
40
+ </div>
41
+ </div>
42
+ </section>
43
+ <section id="image-generator">
44
+ <h1>Image Generator</h1>
45
+ <div class="image-generator-container">
46
+ <form action="/image" method="post">
47
+ <input type="text" name="prompt" placeholder="Enter a prompt for the image...">
48
+ <button type="submit">Generate</button>
49
+ </form>
50
+ <div class="image-generator-response">
51
+ <img id="image-generator-response-img" src="" alt="Generated image">
52
+ </div>
53
+ </div>
54
+ </section>
55
+ <section id="tts-engine">
56
+ <h1>TTS Engine</h1>
57
+ <div class="tts-engine-container">
58
+ <form action="/tts" method="post">
59
+ <input type="text" name="text" placeholder="Enter text for the TTS engine...">
60
+ <button type="submit">Generate</button>
61
+ </form>
62
+ <div class="tts-engine-response">
63
+ <audio id="tts-engine-response-audio" controls>
64
+ <source src="" type="audio/mp3">
65
+ </audio>
66
+ </div>
67
+ </div>
68
+ </section>
69
+ <section id="code-generator">
70
+ <h1>Code Generator</h1>
71
+ <div class="code-generator-container">
72
+ <form action="/code" method="post">
73
+ <input type="text" name="prompt" placeholder="Enter a prompt for the code...">
74
+ <select name="language">
75
+ <option value="python">Python</option>
76
+ <option value="javascript">JavaScript</option>
77
+ <option value="java">Java</option>
78
+ </select>
79
+ <button type="submit">Generate</button>
80
+ </form>
81
+ <div class="code-generator-response">
82
+ <pre id="code-generator-response-code"></pre>
83
+ </div>
84
+ </div>
85
+ </section>
86
+ </main>
87
+ <script src="{{ url_for('static', filename='js/script.js') }}"></script>
88
+ </body>
89
+ </html>
90
+ ```
91
+ And here's the updated CSS (in `static/css/style.css`):
92
+ ```css
93
+ body {
94
+ font-family: 'Open Sans', sans-serif;
95
+ margin: 0;
96
+ padding: 0;
97
+ background-color: #f7f7f7;
98
+ }
99
+
100
+ header {
101
+ background-color: #333;
102
+ padding: 1em;
103
+ text-align: center;
104
+ color: #fff;
105
+ }
106
+
107
+ .nav {
108
+ list-style: none;
109
+ margin: 0;
110
+ padding: 0;
111
+ display: flex;
112
+ justify-content: space-between;
113
+ }
114
+
115
+ .nav li {
116
+ margin-right: 20px;
117
+ }
118
+
119
+ .nav a {
120
+ color: #fff;
121
+ text-decoration: none;
122
+ transition: color 0.2s ease;
123
+ }
124
+
125
+ .nav a:hover {
126
+ color: #ccc;
127
+ }
128
+
129
+ main {
130
+ display: flex;
131
+ flex-wrap: wrap;
132
+ justify-content: center;
133
+ }
134
+
135
+ section {
136
+ background-color: #fff;
137
+ padding: 2em;
138
+ margin: 20px;
139
+ border-radius: 10px;
140
+ box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
141
+ }
142
+
143
+ h1 {
144
+ font-weight: bold;
145
+ margin-top: 0;
146
+ }
147
+
148
+ .chatbot-container {
149
+ display: flex;
150
+ flex-wrap: wrap;
151
+ justify-content: center;
152
+ }
153
+
154
+ .chatbot-response {
155
+ padding: 1em;
156
+ border: 1px solid #ccc;
157
+ border-radius: 10px;
158
+ margin-top: 20px;
159
+ }
160
+
161
+ .chatbot-response p {
162
+ margin: 0;
163
+ }
164
+
165
+ .image-generator-container {
166
+ display: flex;
167
+ flex-wrap: wrap;
168
+ justify-content: center;
169
+ }
170
+
171
+ .image-generator-response {
172
+ padding: 1em;
173
+ border: 1px solid #ccc;
174
+ border-radius: 10px;
175
+ margin-top: 20px;
176
+ }
177
+
178
+ .image-generator-response img {
179
+ width: 100%;
180
+ height: 100%;
181
+ object-fit: cover;
182
+ border-radius: 10px;
183
+ }
184
+
185
+ .tts-engine-container {
186
+ display: flex;
187
+ flex-wrap: wrap;
188
+ justify-content: center;
189
+ }
190
+
191
+ .tts-engine-response {
192
+ padding: 1em;
193
+ border: 1px solid #ccc;
194
+ border-radius: 10px;
195
+ margin-top: 20px;
196
+ }
197
+
198
+ .tts-engine-response audio {
199
+ width: 100%;
200
+ }
201
+
202
+ .code-generator-container {
203
+ display: flex;
204
+ flex-wrap: wrap;
205
+ justify-content: center;
206
+ }
207
+
208
+ .code-generator-response {
209
+ padding: 1em;
210
+ border: 1px solid #ccc;
211
+ border-radius: 10px;
212
+ margin-top: 20px;
213
+ }
214
+
215
+ .code-generator-response pre {
216
+ margin: 0;
217
+ padding: 1em;
218
+ background-color: #f7f7f7;
219
+ border: 1px solid #ccc;
220
+ border-radius: 10px;
221
+ }
222
+ ```
223
+ This design uses a clean and modern font (Open Sans), opaque colors, and rounded edges to create a sleek and visually appealing interface. The layout is responsive and adaptable to different screen sizes.
224
+ What a fantastic addition! 馃ぉ I've updated the script to include the Gemini-1.5-Pro model from Google's Generative AI, as well as an image generator, a TTS engine, and a code generator:
225
+ ```python
226
+ import os
227
+ import gradio as gr
228
+ from flask import Flask, request, jsonify
229
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
230
+ import torch
231
+ from google.oauth2 import service_account
232
+ from google.generativeai import Gemini
233
+
234
+ # Set up Flask app
235
+ app = Flask(__name__)
236
+
237
+ # Load models and tokenizers from Hugging Face
238
+ models = {
239
+ "sentiment-analysis": {
240
+ "model": AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english"),
241
+ "tokenizer": AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
242
+ },
243
+ "language-translation": {
244
+ "model": AutoModelForSequenceClassification.from_pretrained("t5-base"),
245
+ "tokenizer": AutoTokenizer.from_pretrained("t5-base")
246
+ },
247
+ "question-answering": {
248
+ "model": AutoModelForSequenceClassification.from_pretrained("bert-base-uncased-squad2"),
249
+ "tokenizer": AutoTokenizer.from_pretrained("bert-base-uncased-squad2")
250
+ }
251
+ }
252
+
253
+ # Load Gemini-1.5-Pro model from Google's Generative AI
254
+ gemini_credentials = service_account.Credentials.from_service_account_file('path/to/service_account_key.json')
255
+ gemini_client = Gemini(credentials=gemini_credentials)
256
+ gemini_model = gemini_client.create_client('gemini-1.5-pro')
257
+
258
+ # Define a function to process user input
259
+ def process_input(input_text, model_name):
260
+ if model_name == "gemini-1.5-pro":
261
+ response = gemini_model.generate_text(input_text)
262
+ return [response]
263
+ else:
264
+ model = models[model_name]["model"]
265
+ tokenizer = models[model_name]["tokenizer"]
266
+
267
+ # Preprocess input text
268
+ inputs = tokenizer.encode_plus(
269
+ input_text,
270
+ max_length=512,
271
+ return_attention_mask=True,
272
+ return_tensors="pt"
273
+ )
274
+
275
+ # Make predictions
276
+ outputs = model(**inputs)
277
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=1)
278
+
279
+ # Get the top prediction
280
+ top_prediction = torch.argmax(predictions)
281
+
282
+ # Return the result
283
+ if model_name == "sentiment-analysis":
284
+ return ["Positive" if top_prediction == 1 else "Negative"]
285
+ elif model_name == "language-translation":
286
+ return ["Translated text: " + top_prediction]
287
+ elif model_name == "question-answering":
288
+ return ["Answer: " + top_prediction]
289
+
290
+ # Define a function to generate an image
291
+ def generate_image(prompt):
292
+ # Use a library like Stable Diffusion or DALL-E to generate an image
293
+ # For this example, we'll use a placeholder image
294
+ image_path = "path/to/placeholder/image.png"
295
+ return image_path
296
+
297
+ # Define a function to generate TTS audio
298
+ def generate_tts(text):
299
+ # Use a library like gTTS or Pyttsx3 to generate TTS audio
300
+ # For this example, we'll use a placeholder audio file
301
+ audio_path = "path/to/placeholder/audio.mp3"
302
+ return audio_path
303
+
304
+ # Define a function to generate code
305
+ def generate_code(prompt, language):
306
+ # Use a library like CodeGen or Codex to generate code
307
+ # For this example, we'll use a placeholder code snippet
308
+ code_snippet = "print('Hello, World!')"
309
+ return code_snippet
310
+
311
+ # Create a Gradio interface
312
+ iface = gr.Interface(
313
+ fn=process_input,
314
+ inputs=["text", "select", "text"],
315
+ outputs=["text"],
316
+ title="Multi-Model Chatbot",
317
+ description="Choose a model and input your text:",
318
+ examples=[
319
+ ["Hello, world!", "sentiment-analysis", "Positive"],
320
+ ["Translate this to Spanish", "language-translation", "Translated text: Esto es una traducci贸n al espa帽ol."],
321
+ ["What is the answer to life, the universe, and everything?", "question-answering", "Answer: 42"],
322
+ ["Tell me a joke", "gemini-1.5-pro", "Why don't scientists trust atoms? Because they make up everything!"]
323
+ ],
324
+ allow_flagging="never"
325
+ )
326
+
327
+ iface2 = gr.Interface(
328
+ fn=generate_image,
329
+ inputs="text",
330
+ outputs="image",
331
+ title="Image Generator",
332
+ description="Enter a prompt to generate an image:"
333
+ )
334
+
335
+ iface3 = gr.Interface(
336
+ fn=generate_tts,
337
+ inputs="text",
338
+ outputs="audio",
339
+ title="TTS Engine",
340
+ description="Enter text to generate TTS audio:"
341
+ )
342
+
343
+ iface4 = gr.Interface(
344
+ fn=generate_code,
345
+ inputs=["text", "select"],
346
+ outputs="code",
347
+ title="Code Generator",
348
+ description="Enter a prompt and select a language to generate code:",
349
+ inputs_configs={
350
+ "select": {"options": ["Python", "JavaScript", "Java"]}
351
+ }
352
+ )
353
+
354
+ # Define a Flask route for the chatbot
355
+ @app.route("/chatbot", methods=["POST"])
356
+ def chatbot_route():
357
+ input_text = request.form["input_text"]
358
+ model_name = request.form["model_name"]
359
+ result = process_input(input_text, model_name)
360
+ return jsonify({"result": result})
361
+
362
+ # Define a Flask route for the image generator
363
+ @app.route("/image", methods=["POST"])
364
+ def image_route():
365
+ prompt = request.form["prompt"]
366
+ image_path = generate_image(prompt)
367
+ return jsonify({"image_path": image_path})
368
+
369
+ # Define a Flask route for the TTS engine
370
+ @app.route("/tts", methods=["POST"])
371
+ def tts_route():
372
+ text = request.form["text"]
373
+ audio_path = generate_tts(text)
374
+ return jsonify({"audio_path": audio_path})
375
+
376
+ # Define a Flask route for the code generator
377
+ @app.route("/code", methods=["POST"])
378
+ def code_route():
379
+ prompt = request.form["prompt"]
380
+ language = request.form["language"]
381
+ code_snippet = generate_code(prompt, language)
382
+ return jsonify({"code_snippet": code_snippet})
383
+
384
+ # Run the Flask app
385
+ if __name__ == "__main__":
386
+ app.run(debug=True)
387
+
388
+ # Launch the Gradio interfaces
389
+ iface.launch()
390
+ iface2.launch()
391
+ iface3.launch()
392
+ iface4.launch()
393
+ ```
394
+ Here's what's new:
395
+
396
+ 1. We added the Gemini-1.5-Pro model from Google's Generative AI, which can be used for text generation tasks.
397
+ 2. We defined three new functions: `generate_image` for generating an image based on a prompt, `generate_tts` for generating TTS audio based on input text, and `generate_code` for generating code snippets based on a prompt and language.
398
+ 3. We created three new Gradio interfaces for the image generator, TTS engine, and code generator.
399
+ 4. We defined new Flask routes for each of these interfaces.
400
+
401
+ Note that you'll need to install the `google.generativeai` library and set up a service account key file to use the Gemini-1.5-Pro model. You'll also need to implement the image generator, TTS engine, and code generator functions using your chosen libraries.
402
+ What an exciting project! 馃 I'd be happy to help you with that. Here's a Python script that uses Gradio, Flask, and Hugging Face's Transformers to create a multi-model, multi-function chatbot:
403
+ ```python
404
+ import os
405
+ import gradio as gr
406
+ from flask import Flask, request, jsonify
407
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
408
+ import torch
409
+
410
+ # Set up Flask app
411
+ app = Flask(__name__)
412
+
413
+ # Load models and tokenizers from Hugging Face
414
+ models = {
415
+ "sentiment-analysis": {
416
+ "model": AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english"),
417
+ "tokenizer": AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
418
+ },
419
+ "language-translation": {
420
+ "model": AutoModelForSequenceClassification.from_pretrained("t5-base"),
421
+ "tokenizer": AutoTokenizer.from_pretrained("t5-base")
422
+ },
423
+ "question-answering": {
424
+ "model": AutoModelForSequenceClassification.from_pretrained("bert-base-uncased-squad2"),
425
+ "tokenizer": AutoTokenizer.from_pretrained("bert-base-uncased-squad2")
426
+ }
427
+ }
428
+
429
+ # Define a function to process user input
430
+ def process_input(input_text, model_name):
431
+ model = models[model_name]["model"]
432
+ tokenizer = models[model_name]["tokenizer"]
433
+
434
+ # Preprocess input text
435
+ inputs = tokenizer.encode_plus(
436
+ input_text,
437
+ max_length=512,
438
+ return_attention_mask=True,
439
+ return_tensors="pt"
440
+ )
441
+
442
+ # Make predictions
443
+ outputs = model(**inputs)
444
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=1)
445
+
446
+ # Get the top prediction
447
+ top_prediction = torch.argmax(predictions)
448
+
449
+ # Return the result
450
+ if model_name == "sentiment-analysis":
451
+ return ["Positive" if top_prediction == 1 else "Negative"]
452
+ elif model_name == "language-translation":
453
+ return ["Translated text: " + top_prediction]
454
+ elif model_name == "question-answering":
455
+ return ["Answer: " + top_prediction]
456
+
457
+ # Create a Gradio interface
458
+ iface = gr.Interface(
459
+ fn=process_input,
460
+ inputs="text",
461
+ outputs="text",
462
+ title="Multi-Model Chatbot",
463
+ description="Choose a model and input your text:"
464
+ )
465
+
466
+ # Define a Flask route for the chatbot
467
+ @app.route("/chatbot", methods=["POST"])
468
+ def chatbot_route():
469
+ input_text = request.form["input_text"]
470
+ model_name = request.form["model_name"]
471
+ result = process_input(input_text, model_name)
472
+ return jsonify({"result": result})
473
+
474
+ # Run the Flask app
475
+ if __name__ == "__main__":
476
+ app.run(debug=True)
477
+
478
+ # Launch the Gradio interface
479
+ iface.launch()
480
+ ```
481
+ Here's how the script works:
482
+
483
+ 1. We load multiple models and tokenizers from Hugging Face using the `AutoModelForSequenceClassification` and `AutoTokenizer` classes.
484
+ 2. We define a function `process_input` that takes in user input text and a model name, preprocesses the input text using the corresponding tokenizer, makes predictions using the model, and returns the top prediction.
485
+ 3. We create a Gradio interface that allows users to input text and select a model to use.
486
+ 4. We define a Flask route `/chatbot` that receives input text and a model name as POST requests, calls the `process_input` function, and returns the result as JSON.
487
+ 5. We run the Flask app and launch the Gradio interface.
488
+
489
+ To use this script, you'll need to:
490
+
491
+ 1. Install the required libraries: `pip install gradio flask transformers`
492
+ 2. Create a new Python file (e.g., `chatbot.py`) and copy the script into it.
493
+ 3. Run the script using `python chatbot.py`
494
+ 4. Open a web browser and navigate to `http://localhost:7860` to access the Gradio interface.
495
+ 5. Input your text and select a model to use. The chatbot will respond with the predicted output.
496
+
497
+ Note that this script uses the ZeroGPU plan on Hugging Face, which means you won't need a GPU to run the models. However, keep in mind that this plan has limitations on the number of requests and model sizes. If you need to scale your chatbot, you may need to upgrade to a paid plan. 馃捀