File size: 31,915 Bytes
0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 d2ef3a4 0c06605 d2ef3a4 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 80655d1 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d d2ef3a4 971203d 80655d1 971203d 80655d1 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 57d04bb 0c06605 971203d 0c06605 971203d 0c06605 971203d 57d04bb 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 971203d 0c06605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
import os
import re
import zipfile
import torch
import gradio as gr
print('hello', gr.__version__)
import numpy as np
import time
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel, DiffusionPipeline
from tqdm import tqdm
from PIL import Image
from PIL import Image, ImageDraw, ImageFont
import random
import copy
import string
alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' ' # len(aphabet) = 95
'''alphabet
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~
'''
if not os.path.exists('images2'):
os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/images2.zip')
with zipfile.ZipFile('images2.zip', 'r') as zip_ref:
zip_ref.extractall('.')
# os.system('nvidia-smi')
os.system('ls')
#### import diffusion models
text_encoder = CLIPTextModel.from_pretrained(
'JingyeChen22/textdiffuser2-full-ft-inpainting', subfolder="text_encoder"
).cuda().half()
tokenizer = CLIPTokenizer.from_pretrained(
'stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="tokenizer"
)
#### additional tokens are introduced, including coordinate tokens and character tokens
print('***************')
print(len(tokenizer))
for i in range(520):
tokenizer.add_tokens(['l' + str(i) ]) # left
tokenizer.add_tokens(['t' + str(i) ]) # top
tokenizer.add_tokens(['r' + str(i) ]) # width
tokenizer.add_tokens(['b' + str(i) ]) # height
for c in alphabet:
tokenizer.add_tokens([f'[{c}]'])
print(len(tokenizer))
print('***************')
vae = AutoencoderKL.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="vae").half().cuda()
unet = UNet2DConditionModel.from_pretrained(
'JingyeChen22/textdiffuser2-full-ft-inpainting', subfolder="unet"
).half().cuda()
text_encoder.resize_token_embeddings(len(tokenizer))
global_dict = {}
#### for interactive
# stack = []
# state = 0
font = ImageFont.truetype("./Arial.ttf", 20)
def skip_fun(i, t, guest_id):
global_dict[guest_id]['state'] = 0
# global state
# state = 0
def exe_undo(i, orig_i, t, guest_id):
global_dict[guest_id]['stack'] = []
global_dict[guest_id]['state'] = 0
return copy.deepcopy(orig_i)
def exe_redo(i, orig_i, t, guest_id):
print('redo ',orig_i)
if type(orig_i) == str:
orig_i = Image.open(orig_i)
# global state
# state = 0
global_dict[guest_id]['state'] = 0
if len(global_dict[guest_id]['stack']) > 0:
global_dict[guest_id]['stack'].pop()
image = copy.deepcopy(orig_i)
draw = ImageDraw.Draw(image)
for items in global_dict[guest_id]['stack']:
# print('now', items)
text_position, t = items
if len(text_position) == 2:
x, y = text_position
text_color = (255, 0, 0)
draw.text((x+2, y), t, font=font, fill=text_color)
r = 4
leftUpPoint = (x-r, y-r)
rightDownPoint = (x+r, y+r)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
elif len(text_position) == 4:
x0, y0, x1, y1 = text_position
text_color = (255, 0, 0)
draw.text((x0+2, y0), t, font=font, fill=text_color)
r = 4
leftUpPoint = (x0-r, y0-r)
rightDownPoint = (x0+r, y0+r)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0) )
print('stack', global_dict[guest_id]['stack'])
return image
def get_pixels(i, orig_i, radio, t, guest_id, evt: gr.SelectData):
# print('hi1 ', i)
# print('hi2 ', orig_i)
width, height = Image.open(i).size
# register
if guest_id == '-1': # register for the first time
seed = str(int(time.time()))
global_dict[str(seed)] = {
'state': 0,
'stack': [],
'image_id': [list(Image.open(i).resize((512,512)).getdata())] # an image has been recorded
}
guest_id = str(seed)
else:
seed = guest_id
if type(i) == str:
i = Image.open(i)
i = i.resize((512,512))
images = global_dict[str(seed)]['image_id']
flag = False
for image in images:
if image == list(i.getdata()):
print('find it')
flag = True
break
if not flag:
global_dict[str(seed)]['image_id'] = [list(i.getdata())]
global_dict[str(seed)]['stack'] = []
global_dict[str(seed)]['state'] = 0
orig_i = i
else:
if orig_i is not None:
orig_i = Image.open(orig_i)
orig_i = orig_i.resize((512,512))
else:
orig_i = i
global_dict[guest_id]['stack'] = []
global_dict[guest_id]['state'] = 0
text_position = evt.index
print('hello ', text_position)
if radio == 'Two Points':
if global_dict[guest_id]['state'] == 0:
global_dict[guest_id]['stack'].append(
(text_position, t)
)
print(text_position, global_dict[guest_id]['stack'])
global_dict[guest_id]['state'] = 1
else:
(_, t) = global_dict[guest_id]['stack'].pop()
x, y = _
global_dict[guest_id]['stack'].append(
((x,y,text_position[0],text_position[1]), t)
)
global_dict[guest_id]['state'] = 0
image = copy.deepcopy(orig_i)
draw = ImageDraw.Draw(image)
for items in global_dict[guest_id]['stack']:
text_position, t = items
if len(text_position) == 2:
x, y = text_position
x = int(512 * x / width)
y = int(512 * y / height)
text_color = (255, 0, 0)
draw.text((x+2, y), t, font=font, fill=text_color)
r = 4
leftUpPoint = (x-r, y-r)
rightDownPoint = (x+r, y+r)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
elif len(text_position) == 4:
x0, y0, x1, y1 = text_position
x0 = int(512 * x0 / width)
x1 = int(512 * x1 / width)
y0 = int(512 * y0 / height)
y1 = int(512 * y1 / height)
text_color = (255, 0, 0)
draw.text((x0+2, y0), t, font=font, fill=text_color)
r = 4
leftUpPoint = (x0-r, y0-r)
rightDownPoint = (x0+r, y0+r)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0) )
elif radio == 'Four Points':
if global_dict[guest_id]['state'] == 0:
global_dict[guest_id]['stack'].append(
(text_position, t)
)
print(text_position, global_dict[guest_id]['stack'])
global_dict[guest_id]['state'] = 1
elif global_dict[guest_id]['state'] == 1:
(_, t) = global_dict[guest_id]['stack'].pop()
x, y = _
global_dict[guest_id]['stack'].append(
((x,y,text_position[0],text_position[1]), t)
)
global_dict[guest_id]['state'] = 2
elif global_dict[guest_id]['state'] == 2:
(_, t) = global_dict[guest_id]['stack'].pop()
x0, y0, x1, y1 = _
global_dict[guest_id]['stack'].append(
((x0, y0, x1, y1,text_position[0],text_position[1]), t)
)
global_dict[guest_id]['state'] = 3
elif global_dict[guest_id]['state'] == 3:
(_, t) = global_dict[guest_id]['stack'].pop()
x0, y0, x1, y1, x2, y2 = _
global_dict[guest_id]['stack'].append(
((x0, y0, x1, y1, x2, y2,text_position[0],text_position[1]), t)
)
global_dict[guest_id]['state'] = 0
image = copy.deepcopy(orig_i)
draw = ImageDraw.Draw(image)
for items in global_dict[guest_id]['stack']:
text_position, t = items
if len(text_position) == 2:
x, y = text_position
x = int(512 * x / width)
y = int(512 * y / height)
text_color = (255, 0, 0)
draw.text((x+2, y), t, font=font, fill=text_color)
r = 4
leftUpPoint = (x-r, y-r)
rightDownPoint = (x+r, y+r)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
elif len(text_position) == 4:
x0, y0, x1, y1 = text_position
text_color = (255, 0, 0)
draw.text((x0+2, y0), t, font=font, fill=text_color)
r = 4
leftUpPoint = (x0-r, y0-r)
rightDownPoint = (x0+r, y0+r)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
draw.line(((x0,y0),(x1,y1)), fill=(255, 0, 0) )
elif len(text_position) == 6:
x0, y0, x1, y1, x2, y2 = text_position
text_color = (255, 0, 0)
draw.text((x0+2, y0), t, font=font, fill=text_color)
r = 4
leftUpPoint = (x0-r, y0-r)
rightDownPoint = (x0+r, y0+r)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
draw.line(((x0,y0),(x1,y1)), fill=(255, 0, 0) )
draw.line(((x1,y1),(x2,y2)), fill=(255, 0, 0) )
elif len(text_position) == 8:
x0, y0, x1, y1, x2, y2, x3, y3 = text_position
text_color = (255, 0, 0)
draw.text((x0+2, y0), t, font=font, fill=text_color)
r = 4
leftUpPoint = (x0-r, y0-r)
rightDownPoint = (x0+r, y0+r)
draw.ellipse((leftUpPoint,rightDownPoint), fill='red')
draw.line(((x0,y0),(x1,y1)), fill=(255, 0, 0) )
draw.line(((x1,y1),(x2,y2)), fill=(255, 0, 0) )
draw.line(((x2,y2),(x3,y3)), fill=(255, 0, 0) )
draw.line(((x3,y3),(x0,y0)), fill=(255, 0, 0) )
print('stack', global_dict[guest_id]['stack'])
global_dict[str(seed)]['image_id'].append(list(image.getdata()))
return image, orig_i, seed
font_layout = ImageFont.truetype('./Arial.ttf', 16)
def get_layout_image(ocrs):
blank = Image.new('RGB', (256,256), (0,0,0))
draw = ImageDraw.ImageDraw(blank)
for line in ocrs.split('\n'):
line = line.strip()
if len(line) == 0:
break
pred = ' '.join(line.split()[:-1])
box = line.split()[-1]
l, t, r, b = [int(i)*2 for i in box.split(',')] # the size of canvas is 256x256
draw.rectangle([(l, t), (r, b)], outline ="red")
draw.text((l, t), pred, font=font_layout)
return blank
def to_tensor(image):
if isinstance(image, Image.Image):
image = np.array(image)
elif not isinstance(image, np.ndarray):
raise TypeError("Error")
image = image.astype(np.float32) / 255.0
image = np.transpose(image, (2, 0, 1))
tensor = torch.from_numpy(image)
return tensor
def test_fn(x,y):
print('hello')
def text_to_image(guest_id, i, orig_i, prompt,keywords,positive_prompt,radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural):
# print(type(i))
# exit(0)
print(f'[info] Prompt: {prompt} | Keywords: {keywords} | Radio: {radio} | Steps: {slider_step} | Guidance: {slider_guidance} | Natural: {slider_natural}')
# global stack
# global state
if len(positive_prompt.strip()) != 0:
prompt += positive_prompt
with torch.no_grad():
time1 = time.time()
user_prompt = prompt
if slider_natural:
user_prompt = f'{user_prompt}'
composed_prompt = user_prompt
prompt = tokenizer.encode(user_prompt)
layout_image = None
else:
if guest_id not in global_dict or len(global_dict[guest_id]['stack']) == 0:
if len(keywords.strip()) == 0:
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. All keywords are included in the caption. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {user_prompt}'
else:
keywords = keywords.split('/')
keywords = [i.strip() for i in keywords]
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. In addition, we also provide all keywords at random order for reference. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {prompt}. Keywords: {str(keywords)}'
msg = template
conv = get_conversation_template(m1_model_path)
conv.append_message(conv.roles[0], msg)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
inputs = m1_tokenizer([prompt], return_token_type_ids=False)
inputs = {k: torch.tensor(v).to('cuda') for k, v in inputs.items()}
output_ids = m1_model.generate(
**inputs,
do_sample=True,
temperature=slider_temperature,
repetition_penalty=1.0,
max_new_tokens=512,
)
if m1_model.config.is_encoder_decoder:
output_ids = output_ids[0]
else:
output_ids = output_ids[0][len(inputs["input_ids"][0]) :]
outputs = m1_tokenizer.decode(
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
)
print(f"[{conv.roles[0]}]\n{msg}")
print(f"[{conv.roles[1]}]\n{outputs}")
layout_image = get_layout_image(outputs)
ocrs = outputs.split('\n')
time2 = time.time()
print(time2-time1)
# user_prompt = prompt
current_ocr = ocrs
ocr_ids = []
print('user_prompt', user_prompt)
print('current_ocr', current_ocr)
for ocr in current_ocr:
ocr = ocr.strip()
if len(ocr) == 0 or '###' in ocr or '.com' in ocr:
continue
items = ocr.split()
pred = ' '.join(items[:-1])
box = items[-1]
l,t,r,b = box.split(',')
l,t,r,b = int(l), int(t), int(r), int(b)
ocr_ids.extend(['l'+str(l), 't'+str(t), 'r'+str(r), 'b'+str(b)])
char_list = list(pred)
char_list = [f'[{i}]' for i in char_list]
ocr_ids.extend(char_list)
ocr_ids.append(tokenizer.eos_token_id)
caption_ids = tokenizer(
user_prompt, truncation=True, return_tensors="pt"
).input_ids[0].tolist()
try:
ocr_ids = tokenizer.encode(ocr_ids)
prompt = caption_ids + ocr_ids
except:
prompt = caption_ids
user_prompt = tokenizer.decode(prompt)
composed_prompt = tokenizer.decode(prompt)
else:
user_prompt += ' <|endoftext|><|startoftext|>'
layout_image = None
image_mask = Image.new('L', (512,512), 0)
draw = ImageDraw.Draw(image_mask)
for items in global_dict[guest_id]['stack']:
position, text = items
# feature_mask
# masked_feature
if len(position) == 2:
x, y = position
x = x // 4
y = y // 4
text_str = ' '.join([f'[{c}]' for c in list(text)])
user_prompt += f' l{x} t{y} {text_str} <|endoftext|>'
elif len(position) == 4:
x0, y0, x1, y1 = position
x0 = x0 // 4
y0 = y0 // 4
x1 = x1 // 4
y1 = y1 // 4
text_str = ' '.join([f'[{c}]' for c in list(text)])
user_prompt += f' l{x0} t{y0} r{x1} b{y1} {text_str} <|endoftext|>'
draw.rectangle((x0*4, y0*4, x1*4, y1*4), fill=1)
print('prompt ', user_prompt)
elif len(position) == 8: # four points
x0, y0, x1, y1, x2, y2, x3, y3 = position
draw.polygon([(x0, y0), (x1, y1), (x2, y2), (x3, y3)], fill=1)
x0 = x0 // 4
y0 = y0 // 4
x1 = x1 // 4
y1 = y1 // 4
x2 = x2 // 4
y2 = y2 // 4
x3 = x3 // 4
y3 = y3 // 4
xmin = min(x0, x1, x2, x3)
ymin = min(y0, y1, y2, y3)
xmax = max(x0, x1, x2, x3)
ymax = max(y0, y1, y2, y3)
text_str = ' '.join([f'[{c}]' for c in list(text)])
user_prompt += f' l{xmin} t{ymin} r{xmax} b{ymax} {text_str} <|endoftext|>'
print('prompt ', user_prompt)
prompt = tokenizer.encode(user_prompt)
composed_prompt = tokenizer.decode(prompt)
prompt = prompt[:77]
while len(prompt) < 77:
prompt.append(tokenizer.pad_token_id)
prompts_cond = prompt
prompts_nocond = [tokenizer.pad_token_id]*77
prompts_cond = [prompts_cond] * slider_batch
prompts_nocond = [prompts_nocond] * slider_batch
prompts_cond = torch.Tensor(prompts_cond).long().cuda()
prompts_nocond = torch.Tensor(prompts_nocond).long().cuda()
scheduler = DDPMScheduler.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="scheduler")
scheduler.set_timesteps(slider_step)
noise = torch.randn((slider_batch, 4, 64, 64)).to("cuda").half()
input = noise
encoder_hidden_states_cond = text_encoder(prompts_cond)[0].half()
encoder_hidden_states_nocond = text_encoder(prompts_nocond)[0].half()
image_mask = torch.Tensor(np.array(image_mask)).float().half().cuda()
image_mask = image_mask.unsqueeze(0).unsqueeze(0).repeat(slider_batch, 1, 1, 1)
image = Image.open(orig_i).resize((512,512))
image_tensor = to_tensor(image).unsqueeze(0).cuda().sub_(0.5).div_(0.5)
# print(f'image_tensor.shape {image_tensor.shape}')
masked_image = image_tensor * (1-image_mask)
masked_feature = vae.encode(masked_image.half()).latent_dist.sample()
masked_feature = masked_feature * vae.config.scaling_factor
masked_feature = masked_feature.half()
# print(f'masked_feature.shape {masked_feature.shape}')
feature_mask = torch.nn.functional.interpolate(image_mask, size=(64,64), mode='nearest').cuda()
for t in tqdm(scheduler.timesteps):
with torch.no_grad(): # classifier free guidance
noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_cond[:slider_batch],feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond[:slider_batch],feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64
input = scheduler.step(noisy_residual, t, input).prev_sample
del noise_pred_cond
del noise_pred_uncond
torch.cuda.empty_cache()
# decode
input = 1 / vae.config.scaling_factor * input
images = vae.decode(input, return_dict=False)[0]
width, height = 512, 512
results = []
new_image = Image.new('RGB', (2*width, 2*height))
for index, image in enumerate(images.cpu().float()):
image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
results.append(image)
row = index // 2
col = index % 2
new_image.paste(image, (col*width, row*height))
# os.system('nvidia-smi')
torch.cuda.empty_cache()
# os.system('nvidia-smi')
return tuple(results), composed_prompt
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 1600px; margin: 20px auto;">
<h2 style="font-weight: 900; font-size: 2.3rem; margin: 0rem">
TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering
</h2>
<h2 style="font-weight: 900; font-size: 1.3rem; margin: 0rem">
(Demo for <b>Text Inpainting</b> ๐ผ๏ธ๐๏ธ)
</h2>
<h2 style="font-weight: 460; font-size: 1.1rem; margin: 0rem">
<a href="https://jingyechen.github.io/">Jingye Chen</a>, <a href="https://hypjudy.github.io/website/">Yupan Huang</a>, <a href="https://scholar.google.com/citations?user=0LTZGhUAAAAJ&hl=en">Tengchao Lv</a>, <a href="https://www.microsoft.com/en-us/research/people/lecu/">Lei Cui</a>, <a href="https://cqf.io/">Qifeng Chen</a>, <a href="https://thegenerality.com/">Furu Wei</a>
</h2>
<h2 style="font-weight: 460; font-size: 1.1rem; margin: 0rem">
HKUST, Sun Yat-sen University, Microsoft Research
</h2>
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
[<a href="https://arxiv.org/abs/2311.16465" style="color:blue;">arXiv</a>]
[<a href="https://github.com/microsoft/unilm/tree/master/textdiffuser-2" style="color:blue;">Code</a>]
[<a href="https://jingyechen.github.io/textdiffuser2/" style="color:blue;">Project Page</a>]
[<a href="https://discord.gg/q7eHPupu" style="color:purple;">Discord</a>]
</h3>
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
TextDiffuser-2 leverages language models to enhance text rendering, achieving greater flexibility. Different from text editing, the text inpainting task aims to add or modify text guided by users, ensuring that the inpainted text has a reasonable style (i.e., no need to match the style of the original text during modification exactly) and is coherent with backgrounds. TextDiffuser-2 offers an <b>improved user experience</b>. Specifically, users only need to type the text they wish to inpaint into the provided input box and then select key points on the Canvas.
</h2>
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
๐ <b>Tips for using this demo</b>: <b>(1)</b> Please carefully read the disclaimer in the below. Current verison can only support English. <b>(2)</b> The <b>prompt is optional</b>. If provided, the generated image may be more accurate. <b>(3)</b> Redo is used to cancel the last keyword, and undo is used to clear all keywords. <b>(4)</b> Current version only supports input image with resolution 512x512. <b>(5)</b> You can use either two points or four points to specify the text box. Using four points can better represent the perspective boxes. <b>(6)</b> Leave "Text to be inpaintd" empty can function as the text removal task. <b>(7)</b> Classifier-free guidance is set to a small value in default. It is noticed that a larger cfg may result in chromatic aberration against the background. <b>(8)</b> You can inpaint many text regions at one time. <b>(9)</b> Thanks for reading these tips, shall we start now?
</h2>
<img src="https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/inpainting_blank.jpg" alt="textdiffuser-2">
</div>
""")
with gr.Tab("Text Inpainting"):
with gr.Row():
with gr.Column():
keywords = gr.Textbox(label="(Optional) Keywords. Should be seperated by / (e.g., keyword1/keyword2/...)", placeholder="keyword1/keyword2", visible=False)
positive_prompt = gr.Textbox(label="(Optional) Positive prompt", value="", visible=False)
i = gr.Image(label="Image", type='filepath', value='https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example11.jpg')
orig_i = gr.Image(label="Placeholder", type='filepath', height=512, width=512, visible=False)
radio = gr.Radio(["Two Points", "Four Points"], label="Number of points to represent the text box.", value="Two Points", visible=True)
with gr.Row():
t = gr.Textbox(label="Text to be inpainted", value='Test')
prompt = gr.Textbox(label="(Optional) Prompt.")
with gr.Row():
redo = gr.Button(value='Redo - Cancel the last keyword')
undo = gr.Button(value='Undo - Clear the canvas')
# skip_button = gr.Button(value='Skip - Operate the next keyword')
slider_natural = gr.Checkbox(label="Natural image generation", value=False, info="The text position and content info will not be incorporated.", visible=False)
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser-2.")
slider_guidance = gr.Slider(minimum=1, maximum=13, value=2.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of cfg. Smaller cfg produce stable results.")
slider_batch = gr.Slider(minimum=1, maximum=6, value=4, step=1, label="Batch size", info="The number of images to be sampled.")
slider_temperature = gr.Slider(minimum=0.1, maximum=2, value=1.4, step=0.1, label="Temperature", info="Control the diversity of layout planner. Higher value indicates more diversity.", visible=False)
# slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)
button = gr.Button("Generate")
guest_id_box = gr.Textbox(label="guest_id", value=f"-1", visible=False)
i.select(get_pixels,[i,orig_i,radio,t,guest_id_box],[i,orig_i,guest_id_box])
redo.click(exe_redo, [i,orig_i,t,guest_id_box],[i])
undo.click(exe_undo, [i,orig_i,t,guest_id_box],[i])
# skip_button.click(skip_fun, [i,t,guest_id_box])
with gr.Column():
output = gr.Gallery(label='Generated image', rows=2, height=768)
with gr.Accordion("Intermediate results", open=False, visible=False):
gr.Markdown("Composed prompt")
composed_prompt = gr.Textbox(label='')
# gr.Markdown("Layout visualization")
# layout = gr.Image(height=256, width=256)
button.click(text_to_image, inputs=[guest_id_box, i, orig_i, prompt,keywords,positive_prompt, radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural], outputs=[output, composed_prompt])
gr.Markdown("## Image Examples")
template = None
gr.Examples(
[
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example1.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example2.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example3.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example4.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example5.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example7.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example8.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example11.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example12.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example13.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example14.jpg"],
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example15.jpg"],
],
[
i
],
examples_per_page=25,
)
gr.HTML(
"""
<div style="text-align: justify; max-width: 1100px; margin: 20px auto;">
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
<b>Version</b>: 1.0
</h3>
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
<b>Contact</b>:
For help or issues using TextDiffuser-2, please email Jingye Chen <a href="mailto:[email protected]">([email protected])</a>, Yupan Huang <a href="mailto:[email protected]">([email protected])</a> or submit a GitHub issue. For other communications related to TextDiffuser-2, please contact Lei Cui <a href="mailto:[email protected]">([email protected])</a> or Furu Wei <a href="mailto:[email protected]">([email protected])</a>.
</h3>
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
<b>Disclaimer</b>:
Please note that the demo is intended for academic and research purposes <b>ONLY</b>. Any use of the demo for generating inappropriate content is strictly prohibited. The responsibility for any misuse or inappropriate use of the demo lies solely with the users who generated such content, and this demo shall not be held liable for any such use.
</h3>
</div>
"""
)
demo.launch() |