import os import re import zipfile import torch import gradio as gr print('hello', gr.__version__) import time from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel, DiffusionPipeline, LCMScheduler from tqdm import tqdm from PIL import Image from PIL import Image, ImageDraw, ImageFont import random import copy import string alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' ' # len(aphabet) = 95 '''alphabet 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ ''' if not os.path.exists('images2'): os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/images2.zip') with zipfile.ZipFile('images2.zip', 'r') as zip_ref: zip_ref.extractall('.') # os.system('nvidia-smi') os.system('ls') #### import m1 from fastchat.model import load_model, get_conversation_template from transformers import AutoTokenizer, AutoModelForCausalLM m1_model_path = 'JingyeChen22/textdiffuser2_layout_planner' # m1_model, m1_tokenizer = load_model( # m1_model_path, # 'cuda', # 1, # None, # False, # False, # revision="main", # debug=False, # ) m1_tokenizer = AutoTokenizer.from_pretrained(m1_model_path, use_fast=False) m1_model = AutoModelForCausalLM.from_pretrained( m1_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True ).cuda() #### import diffusion models text_encoder = CLIPTextModel.from_pretrained( 'JingyeChen22/textdiffuser2-full-ft', subfolder="text_encoder" ).cuda().half() tokenizer = CLIPTokenizer.from_pretrained( 'stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="tokenizer" ) #### additional tokens are introduced, including coordinate tokens and character tokens print('***************') print(len(tokenizer)) for i in range(520): tokenizer.add_tokens(['l' + str(i) ]) # left tokenizer.add_tokens(['t' + str(i) ]) # top tokenizer.add_tokens(['r' + str(i) ]) # width tokenizer.add_tokens(['b' + str(i) ]) # height for c in alphabet: tokenizer.add_tokens([f'[{c}]']) print(len(tokenizer)) print('***************') vae = AutoencoderKL.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="vae").half().cuda() unet = UNet2DConditionModel.from_pretrained( 'JingyeChen22/textdiffuser2-full-ft', subfolder="unet" ).half().cuda() text_encoder.resize_token_embeddings(len(tokenizer)) #### load lcm components model_id = "lambdalabs/sd-pokemon-diffusers" lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" pipe = DiffusionPipeline.from_pretrained(model_id, unet=copy.deepcopy(unet), tokenizer=tokenizer, text_encoder=copy.deepcopy(text_encoder), torch_dtype=torch.float16) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(lcm_lora_id) pipe.to(device="cuda") global_dict = {} #### for interactive # stack = [] # state = 0 font = ImageFont.truetype("./Arial.ttf", 32) def skip_fun(i, t, guest_id): global_dict[guest_id]['state'] = 0 # global state # state = 0 def exe_undo(i, t, guest_id): global_dict[guest_id]['stack'] = [] global_dict[guest_id]['state'] = 0 # global stack # global state # state = 0 # stack = [] image = Image.open(f'./gray256.jpg') # print('stack', stack) return image def exe_redo(i, t, guest_id): # global state # state = 0 global_dict[guest_id]['state'] = 0 if len(global_dict[guest_id]['stack']) > 0: global_dict[guest_id]['stack'].pop() image = Image.open(f'./gray256.jpg') draw = ImageDraw.Draw(image) for items in global_dict[guest_id]['stack']: # print('now', items) text_position, t = items if len(text_position) == 2: x, y = text_position text_color = (255, 0, 0) draw.text((x+2, y), t, font=font, fill=text_color) r = 4 leftUpPoint = (x-r, y-r) rightDownPoint = (x+r, y+r) draw.ellipse((leftUpPoint,rightDownPoint), fill='red') elif len(text_position) == 4: x0, y0, x1, y1 = text_position text_color = (255, 0, 0) draw.text((x0+2, y0), t, font=font, fill=text_color) r = 4 leftUpPoint = (x0-r, y0-r) rightDownPoint = (x0+r, y0+r) draw.ellipse((leftUpPoint,rightDownPoint), fill='red') draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0) ) print('stack', global_dict[guest_id]['stack']) return image def get_pixels(i, t, guest_id, evt: gr.SelectData): # global state # register if guest_id == '-1': seed = str(int(time.time())) global_dict[str(seed)] = { 'state': 0, 'stack': [] } guest_id = str(seed) else: seed = guest_id text_position = evt.index if global_dict[guest_id]['state'] == 0: global_dict[guest_id]['stack'].append( (text_position, t) ) print(text_position, global_dict[guest_id]['stack']) global_dict[guest_id]['state'] = 1 else: (_, t) = global_dict[guest_id]['stack'].pop() x, y = _ global_dict[guest_id]['stack'].append( ((x,y,text_position[0],text_position[1]), t) ) global_dict[guest_id]['state'] = 0 image = Image.open(f'./gray256.jpg') draw = ImageDraw.Draw(image) for items in global_dict[guest_id]['stack']: # print('now', items) text_position, t = items if len(text_position) == 2: x, y = text_position text_color = (255, 0, 0) draw.text((x+2, y), t, font=font, fill=text_color) r = 4 leftUpPoint = (x-r, y-r) rightDownPoint = (x+r, y+r) draw.ellipse((leftUpPoint,rightDownPoint), fill='red') elif len(text_position) == 4: x0, y0, x1, y1 = text_position text_color = (255, 0, 0) draw.text((x0+2, y0), t, font=font, fill=text_color) r = 4 leftUpPoint = (x0-r, y0-r) rightDownPoint = (x0+r, y0+r) draw.ellipse((leftUpPoint,rightDownPoint), fill='red') draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0) ) print('stack', global_dict[guest_id]['stack']) return image, seed font_layout = ImageFont.truetype('./Arial.ttf', 16) def get_layout_image(ocrs): blank = Image.new('RGB', (256,256), (0,0,0)) draw = ImageDraw.ImageDraw(blank) for line in ocrs.split('\n'): line = line.strip() if len(line) == 0: break pred = ' '.join(line.split()[:-1]) box = line.split()[-1] l, t, r, b = [int(i)*2 for i in box.split(',')] # the size of canvas is 256x256 draw.rectangle([(l, t), (r, b)], outline ="red") draw.text((l, t), pred, font=font_layout) return blank def text_to_image(guest_id, prompt,keywords,positive_prompt,radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural): print(f'[info] Prompt: {prompt} | Keywords: {keywords} | Radio: {radio} | Steps: {slider_step} | Guidance: {slider_guidance} | Natural: {slider_natural}') # global stack # global state if len(positive_prompt.strip()) != 0: prompt += positive_prompt with torch.no_grad(): time1 = time.time() user_prompt = prompt if slider_natural: user_prompt = f'{user_prompt}' composed_prompt = user_prompt prompt = tokenizer.encode(user_prompt) layout_image = None else: if guest_id not in global_dict or len(global_dict[guest_id]['stack']) == 0: if len(keywords.strip()) == 0: template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. All keywords are included in the caption. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {user_prompt}' else: keywords = keywords.split('/') keywords = [i.strip() for i in keywords] template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. In addition, we also provide all keywords at random order for reference. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {prompt}. Keywords: {str(keywords)}' msg = template conv = get_conversation_template(m1_model_path) conv.append_message(conv.roles[0], msg) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() inputs = m1_tokenizer([prompt], return_token_type_ids=False) inputs = {k: torch.tensor(v).to('cuda') for k, v in inputs.items()} output_ids = m1_model.generate( **inputs, do_sample=True, temperature=slider_temperature, repetition_penalty=1.0, max_new_tokens=512, ) if m1_model.config.is_encoder_decoder: output_ids = output_ids[0] else: output_ids = output_ids[0][len(inputs["input_ids"][0]) :] outputs = m1_tokenizer.decode( output_ids, skip_special_tokens=True, spaces_between_special_tokens=False ) print(f"[{conv.roles[0]}]\n{msg}") print(f"[{conv.roles[1]}]\n{outputs}") layout_image = get_layout_image(outputs) ocrs = outputs.split('\n') time2 = time.time() print(time2-time1) # user_prompt = prompt current_ocr = ocrs ocr_ids = [] print('user_prompt', user_prompt) print('current_ocr', current_ocr) for ocr in current_ocr: ocr = ocr.strip() if len(ocr) == 0 or '###' in ocr or '.com' in ocr: continue items = ocr.split() pred = ' '.join(items[:-1]) box = items[-1] l,t,r,b = box.split(',') l,t,r,b = int(l), int(t), int(r), int(b) ocr_ids.extend(['l'+str(l), 't'+str(t), 'r'+str(r), 'b'+str(b)]) char_list = list(pred) char_list = [f'[{i}]' for i in char_list] ocr_ids.extend(char_list) ocr_ids.append(tokenizer.eos_token_id) caption_ids = tokenizer( user_prompt, truncation=True, return_tensors="pt" ).input_ids[0].tolist() try: ocr_ids = tokenizer.encode(ocr_ids) prompt = caption_ids + ocr_ids except: prompt = caption_ids user_prompt = tokenizer.decode(prompt) composed_prompt = tokenizer.decode(prompt) else: user_prompt += ' <|endoftext|><|startoftext|>' layout_image = None for items in global_dict[guest_id]['stack']: position, text = items if len(position) == 2: x, y = position x = x // 4 y = y // 4 text_str = ' '.join([f'[{c}]' for c in list(text)]) user_prompt += f' l{x} t{y} {text_str} <|endoftext|>' elif len(position) == 4: x0, y0, x1, y1 = position x0 = x0 // 4 y0 = y0 // 4 x1 = x1 // 4 y1 = y1 // 4 text_str = ' '.join([f'[{c}]' for c in list(text)]) user_prompt += f' l{x0} t{y0} r{x1} b{y1} {text_str} <|endoftext|>' # composed_prompt = user_prompt prompt = tokenizer.encode(user_prompt) composed_prompt = tokenizer.decode(prompt) prompt = prompt[:77] while len(prompt) < 77: prompt.append(tokenizer.pad_token_id) if radio == 'TextDiffuser-2': prompts_cond = prompt prompts_nocond = [tokenizer.pad_token_id]*77 prompts_cond = [prompts_cond] * slider_batch prompts_nocond = [prompts_nocond] * slider_batch prompts_cond = torch.Tensor(prompts_cond).long().cuda() prompts_nocond = torch.Tensor(prompts_nocond).long().cuda() scheduler = DDPMScheduler.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="scheduler") scheduler.set_timesteps(slider_step) noise = torch.randn((slider_batch, 4, 64, 64)).to("cuda").half() input = noise encoder_hidden_states_cond = text_encoder(prompts_cond)[0].half() encoder_hidden_states_nocond = text_encoder(prompts_nocond)[0].half() for t in tqdm(scheduler.timesteps): with torch.no_grad(): # classifier free guidance noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_cond[:slider_batch]).sample # b, 4, 64, 64 noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond[:slider_batch]).sample # b, 4, 64, 64 noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64 input = scheduler.step(noisy_residual, t, input).prev_sample del noise_pred_cond del noise_pred_uncond torch.cuda.empty_cache() # decode input = 1 / vae.config.scaling_factor * input images = vae.decode(input, return_dict=False)[0] width, height = 512, 512 results = [] new_image = Image.new('RGB', (2*width, 2*height)) for index, image in enumerate(images.cpu().float()): image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) image = image.cpu().permute(0, 2, 3, 1).numpy()[0] image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') results.append(image) row = index // 2 col = index % 2 new_image.paste(image, (col*width, row*height)) # os.system('nvidia-smi') torch.cuda.empty_cache() # os.system('nvidia-smi') return tuple(results), composed_prompt, layout_image elif radio == 'TextDiffuser-2-LCM': generator = torch.Generator(device=pipe.device).manual_seed(random.randint(0,1000)) image = pipe( prompt=user_prompt, generator=generator, # negative_prompt=negative_prompt, num_inference_steps=slider_step, guidance_scale=1, # num_images_per_prompt=slider_batch, ).images # os.system('nvidia-smi') torch.cuda.empty_cache() # os.system('nvidia-smi') return tuple(image), composed_prompt, layout_image with gr.Blocks() as demo: # guest_id = random.randint(0,100000000) # register gr.HTML( """