JiwonGigiShin's picture
Update app.py
0081c7f verified
import streamlit as st
import torch
from transformers import YolosImageProcessor, YolosForObjectDetection, pipeline
from PIL import Image
import requests
st.title("Welcome to πŸ‡·πŸ‡Ί Translator App!πŸͺ†")
input = st.text_area("Your input here! πŸ‡¬πŸ‡§")
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
st.write(pipe(input)[0]['translation_text'])
# url = st.text_area("Put your URL here")
# if url:
# image = Image.open(requests.get(url, stream=True).raw)
# st.image(image)
# model = YolosForObjectDetection.from_pretrained('hustvl/yolos-tiny')
# image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny")
# inputs = image_processor(images=image, return_tensors="pt")
# outputs = model(**inputs)
# # model predicts bounding boxes and corresponding COCO classes
# logits = outputs.logits
# bboxes = outputs.pred_boxes
# st.image(bboxes)
# # print results
# target_sizes = torch.tensor([image.size[::-1]])
# results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
# for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
# box = [round(i, 2) for i in box.tolist()]
# st.write(
# f"Detected {model.config.id2label[label.item()]} with confidence "
# f"{round(score.item(), 3)} at location {box}"
# )