Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,63 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
import numpy as np
|
7 |
from kokoro import KPipeline # For text-to-speech
|
8 |
-
|
9 |
|
10 |
# Load models globally to avoid reloading them repeatedly
|
11 |
-
|
12 |
-
|
13 |
-
caption_model = AutoModelForImageTextToText.from_pretrained("Salesforce/blip-image-captioning-large")
|
14 |
-
|
15 |
-
# Text-to-Story model
|
16 |
story_generator = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-14B")
|
17 |
-
|
18 |
-
# Text-to-Speech model
|
19 |
-
audio_pipeline = KPipeline(lang_code='a')
|
20 |
|
21 |
# Function to generate a caption from an image
|
22 |
def generate_caption(image_bytes):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Function to generate a story from a caption
|
30 |
def generate_story(caption):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
# Function to generate audio from a story
|
41 |
def generate_audio(story):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return None
|
51 |
-
# Concatenate audio segments into a single array
|
52 |
-
concatenated_audio = np.concatenate(audio_segments)
|
53 |
-
# Write to a BytesIO buffer instead of saving to disk
|
54 |
-
audio_buffer = io.BytesIO()
|
55 |
-
sf.write(audio_buffer, concatenated_audio, 24000, format='WAV')
|
56 |
-
audio_buffer.seek(0)
|
57 |
-
return audio_buffer
|
58 |
|
59 |
# Streamlit UI
|
60 |
st.title("Image to Story Audio Generator")
|
@@ -66,28 +69,25 @@ if uploaded_file is not None:
|
|
66 |
image_bytes = uploaded_file.read()
|
67 |
st.image(image_bytes, caption="Uploaded Image", use_column_width=True)
|
68 |
|
69 |
-
# Generate and display caption
|
70 |
with st.spinner("Generating caption..."):
|
71 |
caption = generate_caption(image_bytes)
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
story
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
)
|
92 |
-
else:
|
93 |
-
st.error("Failed to generate audio.")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, pipeline
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
import numpy as np
|
7 |
from kokoro import KPipeline # For text-to-speech
|
8 |
+
import soundfile as sf
|
9 |
|
10 |
# Load models globally to avoid reloading them repeatedly
|
11 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
12 |
+
caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
|
|
|
|
|
|
13 |
story_generator = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-14B")
|
14 |
+
audio_pipeline = KPipeline(lang_code='a') # Assuming 'en' for English
|
|
|
|
|
15 |
|
16 |
# Function to generate a caption from an image
|
17 |
def generate_caption(image_bytes):
|
18 |
+
try:
|
19 |
+
image = Image.open(io.BytesIO(image_bytes))
|
20 |
+
inputs = processor(images=image, return_tensors="pt")
|
21 |
+
outputs = caption_model.generate(**inputs)
|
22 |
+
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
return caption
|
24 |
+
except Exception as e:
|
25 |
+
st.error(f"Error generating caption: {e}")
|
26 |
+
return None
|
27 |
|
28 |
# Function to generate a story from a caption
|
29 |
def generate_story(caption):
|
30 |
+
try:
|
31 |
+
prompt = f"Based on the description '{caption}', tell a short story for children aged 3 to 10 in no more than 100 words."
|
32 |
+
story_output = story_generator(prompt, max_length=150, num_return_sequences=1)
|
33 |
+
story = story_output[0]["generated_text"]
|
34 |
+
story_words = story.split()
|
35 |
+
if len(story_words) > 100:
|
36 |
+
story = " ".join(story_words[:100])
|
37 |
+
return story
|
38 |
+
except Exception as e:
|
39 |
+
st.error(f"Error generating story: {e}")
|
40 |
+
return None
|
41 |
|
42 |
# Function to generate audio from a story
|
43 |
def generate_audio(story):
|
44 |
+
try:
|
45 |
+
audio_generator = audio_pipeline(
|
46 |
+
story, voice='af_heart', speed=1
|
47 |
+
)
|
48 |
+
audio_segments = []
|
49 |
+
for i, (gs, ps, audio) in enumerate(audio_generator):
|
50 |
+
audio_segments.append(audio)
|
51 |
+
if not audio_segments:
|
52 |
+
return None
|
53 |
+
concatenated_audio = np.concatenate(audio_segments)
|
54 |
+
audio_buffer = io.BytesIO()
|
55 |
+
sf.write(audio_buffer, concatenated_audio, 24000, format='WAV')
|
56 |
+
audio_buffer.seek(0)
|
57 |
+
return audio_buffer
|
58 |
+
except Exception as e:
|
59 |
+
st.error(f"Error generating audio: {e}")
|
60 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# Streamlit UI
|
63 |
st.title("Image to Story Audio Generator")
|
|
|
69 |
image_bytes = uploaded_file.read()
|
70 |
st.image(image_bytes, caption="Uploaded Image", use_column_width=True)
|
71 |
|
|
|
72 |
with st.spinner("Generating caption..."):
|
73 |
caption = generate_caption(image_bytes)
|
74 |
+
if caption:
|
75 |
+
st.write("**Generated Caption:**")
|
76 |
+
st.write(caption)
|
77 |
|
78 |
+
with st.spinner("Generating story..."):
|
79 |
+
story = generate_story(caption)
|
80 |
+
if story:
|
81 |
+
st.write("**Generated Story:**")
|
82 |
+
st.write(story)
|
83 |
|
84 |
+
with st.spinner("Generating audio..."):
|
85 |
+
audio_buffer = generate_audio(story)
|
86 |
+
if audio_buffer:
|
87 |
+
st.audio(audio_buffer, format="audio/wav")
|
88 |
+
st.download_button(
|
89 |
+
label="Download Story Audio",
|
90 |
+
data=audio_buffer,
|
91 |
+
file_name="story_audio.wav",
|
92 |
+
mime="audio/wav"
|
93 |
+
)
|
|
|
|
|
|