Jofthomas's picture
Jofthomas HF staff
Update app.py
9bf50e7 verified
raw
history blame
4.3 kB
import gradio as gr
from transformers import AutoTokenizer
import json
import os
from huggingface_hub import login
# Fetch HF Token
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HF_TOKEN", "")
default_model = "meta-llama/Meta-Llama-3-8B-Instruct"
demo_conversation = """[
{"role": "system", "content": "You are a helpful chatbot."},
{"role": "user", "content": "Hi there!"},
{"role": "assistant", "content": "Hello, human!"},
{"role": "user", "content": "Can I ask a question?"}
]"""
description_text = """# Chat Template Viewer
### This space is a helper to learn more about [Chat Templates](https://huggingface.co/docs/transformers/main/en/chat_templating).
"""
default_tools = [{"type": "function", "function": {"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"},
"format": {"type": "string", "enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the user's location."}
},
"required": ["location", "format"]
}
}}]
def get_template_names(model_name):
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
if isinstance(tokenizer.chat_template, dict):
return list(tokenizer.chat_template.keys())
else:
return []
except Exception as e:
return ["Default"]
def update_template_dropdown(model_name):
template_names = get_template_names(model_name)
if template_names:
return gr.Dropdown.update(choices=template_names, value=template_names[0])
return gr.Dropdown.update(choices=[], value=None)
def apply_chat_template(model_name, test_conversation, add_generation_prompt, cleanup_whitespace, template_name, hf_token, kwargs):
try:
if hf_token:
login(token=hf_token) # Ensure login is successful
tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
return f"Error: Could not load model {model_name} or invalid HF token. {str(e)}"
try:
conversation = json.loads(test_conversation)
if template_name and tokenizer.chat_template:
template = tokenizer.chat_template.get(template_name, None)
else:
template = None
formatted = tokenizer.apply_chat_template(
conversation,
chat_template=template,
tokenize=False,
add_generation_prompt=add_generation_prompt,
tools=default_tools
)
return formatted
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks() as demo:
gr.Markdown(description_text)
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name", value=default_model)
template_dropdown = gr.Dropdown(label="Template Name", choices=[], interactive=True)
conversation_input = gr.TextArea(value=demo_conversation, lines=6, label="Conversation")
add_generation_prompt_checkbox = gr.Checkbox(value=False, label="Add generation prompt")
cleanup_whitespace_checkbox = gr.Checkbox(value=True, label="Cleanup template whitespace")
hf_token_input = gr.Textbox(label="Hugging Face Token (optional)", placeholder="Enter your HF token", type="password")
kwargs_input = gr.JSON(label="Additional kwargs", value=default_tools, visible=False)
output = gr.TextArea(label="Formatted conversation", interactive=False)
update_button = gr.Button("Update Template List")
format_button = gr.Button("Format Conversation")
update_button.click(fn=update_template_dropdown, inputs=model_name_input, outputs=template_dropdown)
format_button.click(
fn=apply_chat_template,
inputs=[
model_name_input,
conversation_input,
add_generation_prompt_checkbox,
cleanup_whitespace_checkbox,
template_dropdown,
hf_token_input,
kwargs_input
],
outputs=output
)
demo.launch()