import gradio as gr from transformers import AutoTokenizer import json import os from huggingface_hub import login # Fetch HF Token HUGGINGFACEHUB_API_TOKEN = os.environ.get("HF_TOKEN", "") default_model = "meta-llama/Meta-Llama-3-8B-Instruct" demo_conversation = """[ {"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hi there!"}, {"role": "assistant", "content": "Hello, human!"}, {"role": "user", "content": "Can I ask a question?"} ]""" description_text = """# Chat Template Viewer ### This space helps visualize chat formatting using Hugging Face models. """ default_tools = [{"type": "function", "function": {"name": "get_current_weather", "description": "Get the current weather", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "format": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the user's location."} }, "required": ["location", "format"] } }}] def apply_chat_template(model_name, test_conversation, add_generation_prompt, cleanup_whitespace, hf_token, tools): try: if hf_token: login(token=hf_token) # Ensure login is successful tokenizer = AutoTokenizer.from_pretrained(model_name) except Exception as e: return f"Error: Could not load model {model_name} or invalid HF token. {str(e)}" try: conversation = json.loads(test_conversation) formatted = tokenizer.apply_chat_template( conversation, tokenize=False, add_generation_prompt=add_generation_prompt, tools=tools ) return formatted except Exception as e: return f"Error: {str(e)}" with gr.Blocks() as demo: gr.Markdown(description_text) with gr.Row(): with gr.Column(): model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name", value=default_model) hf_token_input = gr.Textbox(label="Hugging Face Token (optional)", placeholder="Enter your HF token", type="password") conversation_input = gr.TextArea(value=demo_conversation, lines=8, label="Conversation") add_generation_prompt_checkbox = gr.Checkbox(value=False, label="Add generation prompt") cleanup_whitespace_checkbox = gr.Checkbox(value=True, label="Cleanup template whitespace") format_button = gr.Button("Format Conversation") with gr.Column(): output = gr.TextArea(label="Formatted Conversation", interactive=False, lines=12) # Use gr.State() to pass default_tools correctly tools_state = gr.State(default_tools) format_button.click( fn=apply_chat_template, inputs=[ model_name_input, conversation_input, add_generation_prompt_checkbox, cleanup_whitespace_checkbox, hf_token_input, tools_state # Wrapped inside gr.State() ], outputs=output ) demo.launch()