DekGenerate / data_quality.py
Nattapong Tapachoom
Add data quality management features and update requirements
e7a189a
import pandas as pd
import json
import re
import hashlib
from typing import List, Dict, Tuple
from collections import Counter
import unicodedata
from datetime import datetime
class DataQualityManager:
"""Data Quality Management and Standardization"""
def __init__(self):
self.quality_report = {}
self.cleaned_data = []
def clean_text(self, text: str) -> str:
"""Clean and normalize Thai text"""
if not text or not isinstance(text, str):
return ""
# Remove HTML tags
text = re.sub(r'<[^>]+>', '', text)
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text)
# Normalize Thai characters
text = unicodedata.normalize('NFC', text)
# Clean Thai specific issues
text = re.sub(r'ๆ+', 'ๆ', text) # Multiple repetition marks
text = re.sub(r'[฿๏๎๚๛]', '', text) # Remove special Thai symbols
# Remove URLs
text = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', text)
# Remove email addresses
text = re.sub(r'\S+@\S+', '', text)
return text.strip()
def detect_duplicates(self, data: List[Dict]) -> Tuple[List[int], Dict]:
"""Detect duplicate records"""
seen_hashes = {}
duplicates = []
for i, record in enumerate(data):
# Create hash from input content
content = str(record.get('prompt', '')) + str(record.get('input', ''))
content_hash = hashlib.md5(content.encode()).hexdigest()
if content_hash in seen_hashes:
duplicates.append(i)
else:
seen_hashes[content_hash] = i
return duplicates, {"total_duplicates": len(duplicates), "unique_records": len(seen_hashes)}
def validate_completeness(self, data: List[Dict]) -> Dict:
"""Check data completeness"""
required_fields = ['id', 'prompt', 'generated_text']
incomplete_records = []
for i, record in enumerate(data):
missing_fields = [field for field in required_fields if not record.get(field)]
if missing_fields:
incomplete_records.append({
'record_id': i,
'missing_fields': missing_fields
})
return {
"incomplete_records": len(incomplete_records),
"details": incomplete_records[:10] # Show first 10
}
def analyze_quality_metrics(self, data: List[Dict]) -> Dict:
"""Analyze various quality metrics"""
if not data:
return {}
# Text length statistics
prompt_lengths = [len(str(record.get('prompt', ''))) for record in data]
output_lengths = [len(str(record.get('generated_text', ''))) for record in data]
# Language detection (simplified for Thai)
thai_pattern = re.compile(r'[ก-๏]')
thai_records = sum(1 for record in data if thai_pattern.search(str(record.get('generated_text', ''))))
# Model distribution
model_usage = Counter([record.get('model_used', 'unknown') for record in data])
return {
"total_records": len(data),
"avg_prompt_length": sum(prompt_lengths) / len(prompt_lengths) if prompt_lengths else 0,
"avg_output_length": sum(output_lengths) / len(output_lengths) if output_lengths else 0,
"thai_content_ratio": thai_records / len(data) if data else 0,
"model_distribution": dict(model_usage),
"length_stats": {
"min_prompt": min(prompt_lengths) if prompt_lengths else 0,
"max_prompt": max(prompt_lengths) if prompt_lengths else 0,
"min_output": min(output_lengths) if output_lengths else 0,
"max_output": max(output_lengths) if output_lengths else 0
}
}
def standardize_format(self, data: List[Dict], task_type: str) -> Tuple[List[Dict], Dict]:
"""Standardize dataset format according to international standards"""
standardized_data = []
for i, record in enumerate(data):
# Create standardized record
std_record = {
"id": f"{task_type}_{i+1:06d}",
"task_type": task_type,
"input": self.clean_text(str(record.get('prompt', ''))),
"output": self.clean_text(str(record.get('generated_text', ''))),
"metadata": {
"model_used": record.get('model_used', 'unknown'),
"generation_time": record.get('generation_time'),
"language": "th",
"domain": self._detect_domain(record),
"quality_score": self._calculate_quality_score(record)
}
}
# Add original data if available
if record.get('original_data'):
std_record["metadata"]["source_data"] = record['original_data']
standardized_data.append(std_record)
# Create dataset metadata
dataset_metadata = {
"dataset_name": f"thai_{task_type}_dataset",
"created_at": datetime.now().isoformat(),
"version": "1.0.0",
"language": "th",
"task_type": task_type,
"total_samples": len(standardized_data),
"license": "CC-BY-4.0",
"description": f"High-quality Thai {task_type} dataset generated using multiple language models"
}
return standardized_data, dataset_metadata
def _detect_domain(self, record: Dict) -> str:
"""Detect domain/topic of the record"""
text = str(record.get('prompt', '')) + str(record.get('generated_text', ''))
text_lower = text.lower()
# Simple domain detection
if any(word in text_lower for word in ['สุขภาพ', 'โรค', 'ยา', 'แพทย์']):
return "health"
elif any(word in text_lower for word in ['การศึกษา', 'โรงเรียน', 'นักเรียน']):
return "education"
elif any(word in text_lower for word in ['เทคโนโลยี', 'คอมพิวเตอร์', 'โปรแกรม']):
return "technology"
elif any(word in text_lower for word in ['การเงิน', 'ธนาคาร', 'เงิน']):
return "finance"
else:
return "general"
def _calculate_quality_score(self, record: Dict) -> float:
"""Calculate quality score for a record (0-1)"""
score = 1.0
prompt = str(record.get('prompt', ''))
output = str(record.get('generated_text', ''))
# Penalize very short outputs
if len(output) < 10:
score -= 0.3
# Penalize repetitive content
if len(set(output.split())) / len(output.split()) < 0.7 if output.split() else True:
score -= 0.2
# Penalize incomplete responses
if output.endswith('...') or len(output) < len(prompt) * 0.5:
score -= 0.2
# Bonus for Thai content
thai_pattern = re.compile(r'[ก-๏]')
if thai_pattern.search(output):
score += 0.1
return max(0.0, min(1.0, score))
def create_data_splits(self, data: List[Dict], train_ratio: float = 0.8,
val_ratio: float = 0.1, test_ratio: float = 0.1) -> Dict:
"""Create train/validation/test splits"""
import random
# Shuffle data
shuffled_data = data.copy()
random.shuffle(shuffled_data)
total = len(shuffled_data)
train_end = int(total * train_ratio)
val_end = train_end + int(total * val_ratio)
return {
"train": shuffled_data[:train_end],
"validation": shuffled_data[train_end:val_end],
"test": shuffled_data[val_end:]
}
def generate_dataset_card(self, metadata: Dict, quality_metrics: Dict) -> str:
"""Generate dataset card (README) in markdown format"""
card_template = f"""# Thai {metadata['task_type'].title()} Dataset
## Dataset Description
This is a high-quality Thai {metadata['task_type']} dataset created using multiple state-of-the-art language models.
## Dataset Information
- **Language**: Thai (th)
- **Task Type**: {metadata['task_type']}
- **Total Samples**: {metadata['total_samples']:,}
- **Created**: {metadata['created_at']}
- **Version**: {metadata['version']}
- **License**: {metadata['license']}
## Quality Metrics
- **Average Prompt Length**: {quality_metrics.get('avg_prompt_length', 0):.1f} characters
- **Average Output Length**: {quality_metrics.get('avg_output_length', 0):.1f} characters
- **Thai Content Ratio**: {quality_metrics.get('thai_content_ratio', 0):.2%}
## Model Distribution
{self._format_model_distribution(quality_metrics.get('model_distribution', {}))}
## Data Fields
- `id`: Unique identifier for each sample
- `task_type`: Type of NLP task
- `input`: Input prompt or question
- `output`: Generated response or answer
- `metadata`: Additional information including model used, quality score, etc.
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("path/to/dataset")
```
## License
This dataset is released under {metadata['license']} license.
## Citation
If you use this dataset in your research, please cite:
```bibtex
@dataset{{thai_{metadata['task_type']}_dataset,
title={{Thai {metadata['task_type'].title()} Dataset}},
author={{Thai Dataset Generator}},
year={{{datetime.now().year}}},
version={{{metadata['version']}}},
url={{https://github.com/your-repo/thai-dataset}}
}}
```
"""
return card_template
def _format_model_distribution(self, model_dist: Dict) -> str:
"""Format model distribution for markdown"""
if not model_dist:
return "No model distribution data available."
lines = []
for model, count in model_dist.items():
lines.append(f"- **{model}**: {count:,} samples")
return "\n".join(lines)
def export_to_huggingface_format(data_splits: Dict, metadata: Dict, output_dir: str):
"""Export dataset in Hugging Face compatible format"""
import os
import json
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Save data splits
for split_name, split_data in data_splits.items():
with open(os.path.join(output_dir, f"{split_name}.jsonl"), 'w', encoding='utf-8') as f:
for record in split_data:
f.write(json.dumps(record, ensure_ascii=False) + '\n')
# Save dataset info
dataset_info = {
"dataset_name": metadata["dataset_name"],
"config_name": "default",
"version": {"version_str": metadata["version"]},
"description": metadata["description"],
"homepage": "",
"license": metadata["license"],
"features": {
"id": {"dtype": "string"},
"task_type": {"dtype": "string"},
"input": {"dtype": "string"},
"output": {"dtype": "string"},
"metadata": {"dtype": "string"}
},
"splits": {
split_name: {"name": split_name, "num_examples": len(split_data)}
for split_name, split_data in data_splits.items()
}
}
with open(os.path.join(output_dir, "dataset_info.json"), 'w', encoding='utf-8') as f:
json.dump(dataset_info, f, ensure_ascii=False, indent=2)
print(f"Dataset exported to {output_dir}")