import gradio as gr from transformers import pipeline classifier = pipeline( "image-classification", model="google/vit-base-patch16-224" ) def classify_image(image, top_k=3): results = classifier(image) sorted_results = sorted(results, key=lambda x: x["score"], reverse=True) output_dict = {result["label"]: result["score"] for result in sorted_results[:top_k]} return output_dict demo = gr.Interface( fn=classify_image, inputs=[ gr.Image( type="pil", label="이미지 업로드" ), gr.Slider( minimum=1, maximum=10, value=3, step=1, label="상위 K개 결과" ), ], outputs=gr.Label(label="분류 결과"), ) demo.launch()