Spaces:
Build error
Build error
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import TYPE_CHECKING | |
| from ...utils import ( | |
| OptionalDependencyNotAvailable, | |
| _LazyModule, | |
| is_flax_available, | |
| is_tf_available, | |
| is_tokenizers_available, | |
| is_torch_available, | |
| ) | |
| _import_structure = { | |
| "configuration_whisper": ["WhisperConfig", "WhisperOnnxConfig"], | |
| "feature_extraction_whisper": ["WhisperFeatureExtractor"], | |
| "processing_whisper": ["WhisperProcessor"], | |
| "tokenization_whisper": ["WhisperTokenizer"], | |
| } | |
| try: | |
| if not is_tokenizers_available(): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| pass | |
| else: | |
| _import_structure["tokenization_whisper_fast"] = ["WhisperTokenizerFast"] | |
| try: | |
| if not is_torch_available(): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| pass | |
| else: | |
| _import_structure["modeling_whisper"] = [ | |
| "WhisperForCausalLM", | |
| "WhisperForConditionalGeneration", | |
| "WhisperModel", | |
| "WhisperPreTrainedModel", | |
| "WhisperForAudioClassification", | |
| ] | |
| try: | |
| if not is_tf_available(): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| pass | |
| else: | |
| _import_structure["modeling_tf_whisper"] = [ | |
| "TFWhisperForConditionalGeneration", | |
| "TFWhisperModel", | |
| "TFWhisperPreTrainedModel", | |
| ] | |
| try: | |
| if not is_flax_available(): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| pass | |
| else: | |
| _import_structure["modeling_flax_whisper"] = [ | |
| "FlaxWhisperForConditionalGeneration", | |
| "FlaxWhisperModel", | |
| "FlaxWhisperPreTrainedModel", | |
| "FlaxWhisperForAudioClassification", | |
| ] | |
| if TYPE_CHECKING: | |
| from .configuration_whisper import WhisperConfig, WhisperOnnxConfig | |
| from .feature_extraction_whisper import WhisperFeatureExtractor | |
| from .processing_whisper import WhisperProcessor | |
| from .tokenization_whisper import WhisperTokenizer | |
| try: | |
| if not is_tokenizers_available(): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| pass | |
| else: | |
| from .tokenization_whisper_fast import WhisperTokenizerFast | |
| try: | |
| if not is_torch_available(): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| pass | |
| else: | |
| from .modeling_whisper import ( | |
| WhisperForAudioClassification, | |
| WhisperForCausalLM, | |
| WhisperForConditionalGeneration, | |
| WhisperModel, | |
| WhisperPreTrainedModel, | |
| ) | |
| try: | |
| if not is_tf_available(): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| pass | |
| else: | |
| from .modeling_tf_whisper import ( | |
| TFWhisperForConditionalGeneration, | |
| TFWhisperModel, | |
| TFWhisperPreTrainedModel, | |
| ) | |
| try: | |
| if not is_flax_available(): | |
| raise OptionalDependencyNotAvailable() | |
| except OptionalDependencyNotAvailable: | |
| pass | |
| else: | |
| from .modeling_flax_whisper import ( | |
| FlaxWhisperForAudioClassification, | |
| FlaxWhisperForConditionalGeneration, | |
| FlaxWhisperModel, | |
| FlaxWhisperPreTrainedModel, | |
| ) | |
| else: | |
| import sys | |
| sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | |