Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Create prompt_list_generator.py
Browse files- prompt_list_generator.py +59 -0
 
    	
        prompt_list_generator.py
    ADDED
    
    | 
         @@ -0,0 +1,59 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from gradio_client import Client, file
         
     | 
| 2 | 
         
            +
            import os 
         
     | 
| 3 | 
         
            +
            token = os.getenv('HF_TOKEN')
         
     | 
| 4 | 
         
            +
            client = Client("K00B404/HugChatWrap", hf_token=token)
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            def generate(style="dragon themed",x_imgs=3):
         
     | 
| 7 | 
         
            +
                client.predict(
         
     | 
| 8 | 
         
            +
                  api_name="/_pop_last_user_message"
         
     | 
| 9 | 
         
            +
                )
         
     | 
| 10 | 
         
            +
                
         
     | 
| 11 | 
         
            +
                client.predict(
         
     | 
| 12 | 
         
            +
                  api_name="/lambda_6"
         
     | 
| 13 | 
         
            +
                )
         
     | 
| 14 | 
         
            +
                
         
     | 
| 15 | 
         
            +
                client.predict(
         
     | 
| 16 | 
         
            +
                  api_name="/_append_message_to_history_1"
         
     | 
| 17 | 
         
            +
                )
         
     | 
| 18 | 
         
            +
                
         
     | 
| 19 | 
         
            +
                client.predict(
         
     | 
| 20 | 
         
            +
                  api_name="/lambda_2"
         
     | 
| 21 | 
         
            +
                )
         
     | 
| 22 | 
         
            +
                
         
     | 
| 23 | 
         
            +
                client.predict(
         
     | 
| 24 | 
         
            +
                  param_2=None,
         
     | 
| 25 | 
         
            +
                  param_3=None,
         
     | 
| 26 | 
         
            +
                  param_4=You are a expert prompt engineer, and specialize in visual description prompts for image generation models.,
         
     | 
| 27 | 
         
            +
                  param_5=2048,
         
     | 
| 28 | 
         
            +
                  api_name="/_stream_fn_1"
         
     | 
| 29 | 
         
            +
                )
         
     | 
| 30 | 
         
            +
                
         
     | 
| 31 | 
         
            +
                client.predict(
         
     | 
| 32 | 
         
            +
                  api_name="/lambda_8"
         
     | 
| 33 | 
         
            +
                )
         
     | 
| 34 | 
         
            +
                
         
     | 
| 35 | 
         
            +
                img_list=client.predict(
         
     | 
| 36 | 
         
            +
                  x=[f"""make a python list of {x_imgs} visual descriptions as prompts for a image generation model, inspired by [{style}] , 
         
     | 
| 37 | 
         
            +
                  make sure the prompts are ramdom , eleborate, and describe mindblowing details.
         
     | 
| 38 | 
         
            +
                  example response:
         
     | 
| 39 | 
         
            +
                  [
         
     | 
| 40 | 
         
            +
                      'In a realm of shimmering quartz crystal veins, a mythical phoenix soars amidst the cosmic dance of constellations, its plumage a dazzling display of hues that defy imagination.',
         
     | 
| 41 | 
         
            +
                      'A breathtaking panorama of a snow-capped mountain range, where ancient glaciers have carved out a landscape of icy wonder, their pristine whiteness beckoning to the keen eye.',
         
     | 
| 42 | 
         
            +
                      'A kaleidoscope of color, as a living tapestry of bioluminescent algae unfolds across the surface of a deep-sea vortex, their soft glow illuminating the surrounding darkness in a mesmerizing display of nature's grand spectacle.'
         
     | 
| 43 | 
         
            +
                  ]
         
     | 
| 44 | 
         
            +
                  """],
         
     | 
| 45 | 
         
            +
                  api_name="/lambda_3"
         
     | 
| 46 | 
         
            +
                )
         
     | 
| 47 | 
         
            +
                
         
     | 
| 48 | 
         
            +
                client.predict(
         
     | 
| 49 | 
         
            +
                  api_name="/lambda_4"
         
     | 
| 50 | 
         
            +
                )
         
     | 
| 51 | 
         
            +
                
         
     | 
| 52 | 
         
            +
                client.predict(
         
     | 
| 53 | 
         
            +
                  saved_conversations=None,
         
     | 
| 54 | 
         
            +
                  api_name="/_save_conversation_1"
         
     | 
| 55 | 
         
            +
                )
         
     | 
| 56 | 
         
            +
                return img_list
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 59 | 
         
            +
                print(generate("dragon themed",3))
         
     |