Spaces:
Runtime error
Runtime error
from bot_backend import * | |
import base64 | |
import time | |
import tiktoken | |
from notebook_serializer import add_code_cell_error_to_notebook, add_image_to_notebook, add_code_cell_output_to_notebook | |
SLICED_CONV_MESSAGE = "[Rest of the conversation has been omitted to fit in the context window]" | |
def get_conversation_slice(conversation, model, encoding_for_which_model, min_output_tokens_count=500): | |
""" | |
Function to get a slice of the conversation that fits in the model's context window. returns: The conversation | |
with the first message(explaining the role of the assistant) + the last x messages that can fit in the context | |
window. | |
""" | |
encoder = tiktoken.encoding_for_model(encoding_for_which_model) | |
count_tokens = lambda txt: len(encoder.encode(txt)) | |
nb_tokens = count_tokens(conversation[0]['content']) | |
sliced_conv = [conversation[0]] | |
context_window_limit = int(config['model_context_window'][model]) | |
max_tokens = context_window_limit - count_tokens(SLICED_CONV_MESSAGE) - min_output_tokens_count | |
sliced = False | |
for message in conversation[-1:0:-1]: | |
nb_tokens += count_tokens(message['content']) | |
if nb_tokens > max_tokens: | |
sliced_conv.insert(1, {'role': 'system', 'content': SLICED_CONV_MESSAGE}) | |
sliced = True | |
break | |
sliced_conv.insert(1, message) | |
return sliced_conv, nb_tokens, sliced | |
def chat_completion(bot_backend: BotBackend): | |
model_choice = bot_backend.gpt_model_choice | |
model_name = bot_backend.config['model'][model_choice]['model_name'] | |
kwargs_for_chat_completion = copy.deepcopy(bot_backend.kwargs_for_chat_completion) | |
if bot_backend.config['API_TYPE'] == "azure": | |
kwargs_for_chat_completion['messages'], nb_tokens, sliced = \ | |
get_conversation_slice( | |
conversation=kwargs_for_chat_completion['messages'], | |
model=model_name, | |
encoding_for_which_model='gpt-3.5-turbo' if model_choice == 'GPT-3.5' else 'gpt-4' | |
) | |
else: | |
kwargs_for_chat_completion['messages'], nb_tokens, sliced = \ | |
get_conversation_slice( | |
conversation=kwargs_for_chat_completion['messages'], | |
model=model_name, | |
encoding_for_which_model=model_name | |
) | |
bot_backend.update_token_count(num_tokens=nb_tokens) | |
bot_backend.update_sliced_state(sliced=sliced) | |
assert config['model'][model_choice]['available'], f"{model_choice} is not available for your API key" | |
assert model_name in config['model_context_window'], \ | |
f"{model_name} lacks context window information. Please check the config.json file." | |
response = openai.ChatCompletion.create(**kwargs_for_chat_completion) | |
return response | |
def add_code_execution_result_to_bot_history(content_to_display, history, unique_id): | |
images, text = [], [] | |
# terminal output | |
error_occurred = False | |
for mark, out_str in content_to_display: | |
if mark in ('stdout', 'execute_result_text', 'display_text'): | |
text.append(out_str) | |
add_code_cell_output_to_notebook(out_str) | |
elif mark in ('execute_result_png', 'execute_result_jpeg', 'display_png', 'display_jpeg'): | |
if 'png' in mark: | |
images.append(('png', out_str)) | |
add_image_to_notebook(out_str, 'image/png') | |
else: | |
add_image_to_notebook(out_str, 'image/jpeg') | |
images.append(('jpg', out_str)) | |
elif mark == 'error': | |
# Set output type to error | |
text.append(delete_color_control_char(out_str)) | |
error_occurred = True | |
add_code_cell_error_to_notebook(out_str) | |
text = '\n'.join(text).strip('\n') | |
if error_occurred: | |
history.append([None, f'❌Terminal output:\n```shell\n\n{text}\n```']) | |
else: | |
history.append([None, f'✔️Terminal output:\n```shell\n{text}\n```']) | |
# image output | |
for filetype, img in images: | |
image_bytes = base64.b64decode(img) | |
temp_path = f'cache/temp_{unique_id}' | |
if not os.path.exists(temp_path): | |
os.mkdir(temp_path) | |
path = f'{temp_path}/{hash(time.time())}.{filetype}' | |
with open(path, 'wb') as f: | |
f.write(image_bytes) | |
width, height = get_image_size(path) | |
history.append( | |
[ | |
None, | |
f'<img src=\"file={path}\" style=\'{"" if width < 800 else "width: 800px;"} max-width:none; ' | |
f'max-height:none\'> ' | |
] | |
) | |
def add_function_response_to_bot_history(hypertext_to_display, history): | |
if hypertext_to_display is not None: | |
if history[-1][1]: | |
history.append([None, hypertext_to_display]) | |
else: | |
history[-1][1] = hypertext_to_display | |
def parse_json(function_args: str, finished: bool): | |
""" | |
GPT may generate non-standard JSON format string, which contains '\n' in string value, leading to error when using | |
`json.loads()`. | |
Here we implement a parser to extract code directly from non-standard JSON string. | |
:return: code string if successfully parsed otherwise None | |
""" | |
parser_log = { | |
'met_begin_{': False, | |
'begin_"code"': False, | |
'end_"code"': False, | |
'met_:': False, | |
'met_end_}': False, | |
'met_end_code_"': False, | |
"code_begin_index": 0, | |
"code_end_index": 0 | |
} | |
try: | |
for index, char in enumerate(function_args): | |
if char == '{': | |
parser_log['met_begin_{'] = True | |
elif parser_log['met_begin_{'] and char == '"': | |
if parser_log['met_:']: | |
if finished: | |
parser_log['code_begin_index'] = index + 1 | |
break | |
else: | |
if index + 1 == len(function_args): | |
return None | |
else: | |
temp_code_str = function_args[index + 1:] | |
if '\n' in temp_code_str: | |
try: | |
return json.loads(function_args + '"}')['code'] | |
except json.JSONDecodeError: | |
try: | |
return json.loads(function_args + '}')['code'] | |
except json.JSONDecodeError: | |
try: | |
return json.loads(function_args)['code'] | |
except json.JSONDecodeError: | |
if temp_code_str[-1] in ('"', '\n'): | |
return None | |
else: | |
return temp_code_str.strip('\n') | |
else: | |
return json.loads(function_args + '"}')['code'] | |
elif parser_log['begin_"code"']: | |
parser_log['end_"code"'] = True | |
else: | |
parser_log['begin_"code"'] = True | |
elif parser_log['end_"code"'] and char == ':': | |
parser_log['met_:'] = True | |
else: | |
continue | |
if finished: | |
for index, char in enumerate(function_args[::-1]): | |
back_index = -1 - index | |
if char == '}': | |
parser_log['met_end_}'] = True | |
elif parser_log['met_end_}'] and char == '"': | |
parser_log['code_end_index'] = back_index - 1 | |
break | |
else: | |
continue | |
code_str = function_args[parser_log['code_begin_index']: parser_log['code_end_index'] + 1] | |
if '\n' in code_str: | |
return code_str.strip('\n') | |
else: | |
return json.loads(function_args)['code'] | |
except Exception as e: | |
return None | |
def get_image_size(image_path): | |
with Image.open(image_path) as img: | |
width, height = img.size | |
return width, height | |