K00B404's picture
Update app.py
5e0b0a9 verified
import os
os.system('git clone https://github.com/tencent-ailab/IP-Adapter.git')
os.system('wget https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter_sd15.bin')
os.system('mv IP-Adapter IP_Adapter')
os.system('ls IP_Adapter/ip_adapter')
import gradio as gr
import torch
from PIL import Image
from diffusers import (
StableDiffusionPipeline, StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipelineLegacy, DDIMScheduler, AutoencoderKL
)
from IP_Adapter.ip_adapter import IPAdapter
# Paths and device
base_model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_repo="InvokeAI/ip_adapter_sd_image_encoder"
image_encoder_path = "IP_Adapter/ip_adapter/models/image_encoder/"
ip_ckpt = "ip-adapter_sd15.bin"
device = "cuda" # or "cuda" if using GPU
# VAE and scheduler
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path)#.to(dtype=torch.float16)
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def generate_variations(upload_img):
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=None,
safety_checker=None,
#torch_dtype=torch.float16
)
ip_model = IPAdapter(pipe, image_encoder_repo, ip_ckpt, device)
images = ip_model.generate(pil_image=upload_img, num_samples=4, num_inference_steps=50, seed=42)
return image_grid(images, 1, 4)
def generate_img2img(base_img, guide_img):
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
base_model_path,
#torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=None,
safety_checker=None
)
ip_model = IPAdapter(pipe, image_encoder_repo, ip_ckpt, device)
images = ip_model.generate(pil_image=base_img, image=guide_img, strength=0.6, num_samples=4, num_inference_steps=50, seed=42)
return image_grid(images, 1, 4)
def generate_inpaint(input_img, masked_img, mask_img):
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(
base_model_path,
#torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=None,
safety_checker=None
)
ip_model = IPAdapter(pipe, image_encoder_repo, ip_ckpt, device)
images = ip_model.generate(pil_image=input_img, image=masked_img, mask_image=mask_img,
strength=0.7, num_samples=4, num_inference_steps=50, seed=42)
return image_grid(images, 1, 4)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# IP-Adapter Image Manipulation Demo")
with gr.Tab("Image Variations"):
with gr.Row():
img_input = gr.Image(type="pil", label="Upload Image")
img_output = gr.Image(label="Generated Variations")
img_btn = gr.Button("Generate Variations")
img_btn.click(fn=generate_variations, inputs=img_input, outputs=img_output)
with gr.Tab("Image-to-Image"):
with gr.Row():
img1 = gr.Image(type="pil", label="Base Image")
img2 = gr.Image(type="pil", label="Guide Image")
img2_out = gr.Image(label="Output")
btn2 = gr.Button("Generate Img2Img")
btn2.click(fn=generate_img2img, inputs=[img1, img2], outputs=img2_out)
with gr.Tab("Inpainting"):
with gr.Row():
inpaint_img = gr.Image(type="pil", label="Input Image")
masked = gr.Image(type="pil", label="Masked Image")
mask = gr.Image(type="pil", label="Mask")
inpaint_out = gr.Image(label="Inpainted")
btn3 = gr.Button("Generate Inpainting")
btn3.click(fn=generate_inpaint, inputs=[inpaint_img, masked, mask], outputs=inpaint_out)
demo.launch()